|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Algebraic Integrability: the Adler–Van Moerbeke Approach
Ahmed Lesfari Department of Mathematics, Faculty of Sciences, University of Chouaïb Doukkali, B.P. 20, El-Jadida, Morocco
Аннотация:
In this paper, I present an overview of the active area of algebraic completely integrable systems in the sense of Adler and van Moerbeke. These are integrable systems whose trajectories are straight line motions on abelian varieties (complex algebraic tori). We make, via the Kowalewski–Painlevé analysis, a study of the level manifolds of the systems. These manifolds are described explicitly as being affine part of abelian varieties and the flow can be solved by quadrature, that is to say their solutions can be expressed in terms of abelian integrals. The Adler–Van Moerbeke method’s which will be used is devoted to illustrate how to decide about the algebraic completely integrable Hamiltonian systems and it is primarily analytical but heavily inspired by algebraic geometrical methods. I will discuss some interesting and well known examples of algebraic completely integrable systems: a five-dimensional system, the Hénon–Heiles system, the Kowalewski rigid body motion and the geodesic flow on the group SO(n) for a left invariant metric.
Ключевые слова:
completely integrable systems, topological structure of phase space, methods of integration.
Поступила в редакцию: 05.09.2009 Принята в печать: 19.10.2010
Образец цитирования:
Ahmed Lesfari, “Algebraic Integrability: the Adler–Van Moerbeke Approach”, Regul. Chaotic Dyn., 16:3-4 (2011), 187–209
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd435 https://www.mathnet.ru/rus/rcd/v16/i3/p187
|
Статистика просмотров: |
Страница аннотации: | 129 |
|