Аннотация:
In this paper, equations of motion for the problem of a ball rolling without slipping on a rotating hyperbolic paraboloid are obtained. Integrals of motions and an invariant measure are found. A detailed linear stability analysis of the ball’s rotations at the saddle point of the hyperbolic paraboloid is made. A three-dimensional Poincaré map generated by the phase flow of the problem is numerically investigated and the existence of a region of bounded trajectories in a neighborhood of the saddle point of the paraboloid is demonstrated. It is shown that a similar problem of a ball rolling on a rotating paraboloid, considered within the framework of the rubber model, can be reduced to a Hamiltonian system which includes the Brower problem as a particular case.
Ключевые слова:
Paul trap, stability, nonholonomic system, three-dimensional map, gyroscopic stabilization, noninertial coordinate system, Poincaré map, nonholonomic constraint, rolling without slipping, region of linear stability.
The work of A.V. Borisov (Introduction, Section 1) was carried out at MIPT under project 5-100 for state support for leading universities of the Russian Federation. The work of A. A. Kilin (Sections 3, 5 and Appendix B) and I. S. Mamaev (Sections 2, 4 and Appendix A) was carried out within the framework of the state assignment to the Ministry of Education and Science of Russia (nos. 1.2404.2017/4.6 and 1.2405.2017/4.6, respectively).
Поступила в редакцию: 12.03.2018 Принята в печать: 16.04.2018
Образец цитирования:
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “A Nonholonomic Model of the Paul Trap”, Regul. Chaotic Dyn., 23:3 (2018), 339–354
\RBibitem{BorKilMam18}
\by Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev
\paper A Nonholonomic Model of the Paul Trap
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 3
\pages 339--354
\mathnet{http://mi.mathnet.ru/rcd327}
\crossref{https://doi.org/10.1134/S1560354718030085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3811823}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RCD....23..339B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000434637700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048110087}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd327
https://www.mathnet.ru/rus/rcd/v23/i3/p339
Эта публикация цитируется в следующих 7 статьяx:
Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492
Alexander A. Kilin, Elena N. Pivovarova, “A Particular Integrable Case in the Nonautonomous Problem
of a Chaplygin Sphere Rolling on a Vibrating Plane”, Regul. Chaotic Dyn., 26:6 (2021), 775–786
Alexander A. Kilin, Elena N. Pivovarova, “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 729–752
Y. Wang, J.-Ch. Cui, J. Chen, Y.-X. Guo, “Quasi-canonicalization for linear homogeneous nonholonomic systems”, Chin. Phys. B, 29:6 (2020)
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness”, Regul. Chaotic Dyn., 24:3 (2019), 329–352
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Comment on “Confining rigid balls by mimicking quadrupole ion trapping” [Am. J. Phys. 85, 821 (2017)]”, Am. J. Phys., 87:11 (2019), 935–938
A. V. Borisov, T. B. Ivanova, A. A. Kilin, I. S. Mamaev, “Nonholonomic rolling of a ball on the surface of a rotating cone”, Nonlinear Dyn., 97:2 (2019), 1635–1648