Аннотация:
In the phase space reduced by rotation, we prove the existence of periodic orbits of the $(n + 1)$-vortex problem emanating from a relative equilibrium formed by $n$ unit vortices at the vertices of a regular polygon at a fixed latitude and an additional vortex of intensity $\kappa$ at the north pole when the ideal fluid moves on the surface of a sphere.
Ключевые слова:
point vortex problem, relative equilibria, periodic orbits, Lyapunov center theorem.
Образец цитирования:
Adecarlos C. Carvalho, Hildeberto E. Cabral, “Lyapunov Orbits in the $n$-Vortex Problem on the Sphere”, Regul. Chaotic Dyn., 20:3 (2015), 234–246