Аннотация:
Separators are fundamental plasma physics objects that play an important role in many astrophysical phenomena. Looking for separators and their number is one of the first steps in studying the topology of the magnetic field in the solar corona. In the language of dynamical systems, separators are noncompact heteroclinic curves. In this paper we give an exact lower estimation of the number of noncompact heteroclinic curves for a 3-diffeomorphism with the so-called “surface dynamics”. Also, we prove that ambient manifolds for such diffeomorphisms are mapping tori.
Ключевые слова:
separator in a magnetic field, heteroclinic curves, mapping torus, gradient-like diffeomorphisms.
The publication was supported by the Russian Foundation for Basic Research (project No. 15-01-03687-a, 16-51-10005-Ko_a), Russian Science Foundation (project No. 14-41-00044) and the Basic Research Program at the HSE (project 90) in 2017.
Поступила в редакцию: 10.10.2016 Принята в печать: 17.11.2016
Образец цитирования:
Vyacheslav Z. Grines, Elena Ya. Gurevich, Olga V. Pochinka, “On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics”, Regul. Chaotic Dyn., 22:2 (2017), 122–135
\RBibitem{GriGurPoc17}
\by Vyacheslav Z. Grines, Elena Ya. Gurevich, Olga V. Pochinka
\paper On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 2
\pages 122--135
\mathnet{http://mi.mathnet.ru/rcd246}
\crossref{https://doi.org/10.1134/S1560354717020022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000398060800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016992106}