|
On the Structure of Orbits from a Neighborhood of a Transversal Homoclinic Orbit to a Nonhyperbolic Fixed Point
Sergey V. Gonchenkoab, Ol'ga V. Gordeevab a Laboratory of Dynamical Systems and Applications,
National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia
b Mathematical Center “Mathematics of Future Technologies”,
Lobachevsky State University of Nizhny Novgorod,
pr. Gagarina 23, 603022 Nizhny Novgorod, Russia
Аннотация:
We consider a one-parameter family fμ of multidimensional diffeomorphisms such that for μ=0 the diffeomorphism f0 has a transversal homoclinic orbit to a nonhyperbolic fixed point of arbitrary finite order n⩾1 of degeneracy, and for μ>0 the fixed point becomes a hyperbolic saddle. In the paper, we give a complete description of the structure of the set Nμ of all orbits entirely lying in a sufficiently small fixed neighborhood of the homoclinic orbit. Moreover, we show that for μ⩾0 the set Nμ is hyperbolic (for μ=0 it is nonuniformly hyperbolic) and the dynamical system fμ|Nμ (the restriction of fμ to Nμ) is topologically conjugate to a certain nontrivial subsystem of the topological Bernoulli scheme of two symbols.
Ключевые слова:
saddle-node, nonhyperbolic saddle, homoclinic orbit, hyperbolic set, topological
Bernoulli scheme, one-dimensional map
Поступила в редакцию: 28.11.2024 Принята в печать: 13.01.2025
Образец цитирования:
Sergey V. Gonchenko, Ol'ga V. Gordeeva, “On the Structure of Orbits from a Neighborhood of a Transversal Homoclinic Orbit to a Nonhyperbolic Fixed Point”, Regul. Chaotic Dyn., 30:1 (2025), 9–25
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1293 https://www.mathnet.ru/rus/rcd/v30/i1/p9
|
Статистика просмотров: |
Страница аннотации: | 15 |
|