Аннотация:
This paper treats the problem of a spherical robot with an axisymmetric pendulum
drive rolling without slipping on a vibrating plane. The main purpose of the paper is to
investigate the stabilization of the upper vertical rotations of the pendulum using feedback
(additional control action). For the chosen type of feedback, regions of asymptotic stability
of the upper vertical rotations of the pendulum are constructed and possible bifurcations are
analyzed. Special attention is also given to the question of the stability of periodic solutions
arising as the vertical rotations lose stability.
The work of A.A.Kilin (Sections 4.3–4.5 and 5) was performed at the Ural Mathematical Center
(Agreement no. 075-02-2023-933). The work of T. B. Ivanova (Sections 1 and 2) was carried out
within the framework of the state assignment of the Ministry of Science and Higher Education of
Russia (FZZN-2020-0011). The work of E. N.Pivovarova (Sections 3, 4.1 and 4.2) was carried out
within the framework of the state assignment of the Ministry of Science and Higher Education of
Russia (FEWS-2020-0009).
Поступила в редакцию: 21.08.2023 Принята в печать: 16.11.2023
Образец цитирования:
Alexander A. Kilin, Tatiana B. Ivanova, Elena N. Pivovarova, “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905
\RBibitem{KilIvaPiv23}
\by Alexander A. Kilin, Tatiana B. Ivanova, Elena N. Pivovarova
\paper Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 6
\pages 888--905
\mathnet{http://mi.mathnet.ru/rcd1240}
\crossref{https://doi.org/10.1134/S1560354723060060}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1240
https://www.mathnet.ru/rus/rcd/v28/i6/p888
Эта публикация цитируется в следующих 2 статьяx:
E. A. Mikishanina, “Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside”, Rus. J. Nonlin. Dyn., 20:1 (2024), 179–193
A. V. Klekovkin, Yu. L. Karavaev, A. V. Nazarov, “Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base”, Rus. J. Nonlin. Dyn., 20:5 (2024), 845–858