|
Non-Integrable Sub-Riemannian Geodesic Flow on J2(R2,R)
Alejandro Bravo-Doddoli Dept. of Mathematics, UCSC,
1156 High Street, 95064 Santa Cruz, CA
Аннотация:
The space of 2-jets of a real function of two real variables, denoted by J2(R2,R), admits the structure of a metabelian Carnot group, so J2(R2,R) has a normal abelian sub-group A. As any sub-Riemannian manifold, J2(R2,R) has an associated Hamiltonian geodesic flow. The Hamiltonian action of A on T∗J2(R2,R) yields the reduced Hamiltonian Hμ on T∗H≃T∗(J2(R2,R)/A), where Hμ is a two-dimensional Euclidean space. The paper is devoted to proving that the reduced Hamiltonian Hμ is non-integrable by meromorphic functions for some values of μ. This result suggests the sub-Riemannian geodesic flow on J2(R2,R) is not meromorphically integrable.
Ключевые слова:
Carnot group, Jet space, non-integrable system, sub-Riemannian geometry.
Поступила в редакцию: 13.12.2022 Принята в печать: 04.08.2023
Образец цитирования:
Alejandro Bravo-Doddoli, “Non-Integrable Sub-Riemannian Geodesic Flow on J2(R2,R)”, Regul. Chaotic Dyn., 28:6 (2023), 835–840
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1236 https://www.mathnet.ru/rus/rcd/v28/i6/p835
|
Статистика просмотров: |
Страница аннотации: | 82 | Список литературы: | 28 |
|