Аннотация:
In this paper we investigate a nonholonomic system with parametric excitation,
a Roller Racer with variable gyrostatic momentum. We examine in detail the problem of the
existence of regimes with unbounded growth of energy (nonconservative Fermi acceleration).
We find a criterion for the existence of trajectories for which one of the velocity components
increases withound bound and has asymptotics t1/3. In addition, we show that the problem
under consideration reduces to analysis of a three-dimensional Poincaré map. This map exhibits
both regular attractors (a fixed point, a limit cycle and a torus) and strange attractors.
The work of I. A. Bizyaev (Sections 3 and 4) was supported by the Russian Science Foundation
(No. 21-71-10039). The work of I. S. Mamaev (Sections 2 and 5) was carried out within the
framework of the state assignment of the Ministry of Science and Higher Education of Russia
(FZZN-2020-0011).
Поступила в редакцию: 07.11.2022 Принята в печать: 27.12.2022
Образец цитирования:
Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum:
Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130
\RBibitem{BizMam23}
\by Ivan A. Bizyaev, Ivan S. Mamaev
\paper Roller Racer with Varying Gyrostatic Momentum:
Acceleration Criterion and Strange Attractors
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 1
\pages 107--130
\mathnet{http://mi.mathnet.ru/rcd1197}
\crossref{https://doi.org/10.1134/S1560354723010070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4559071}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1197
https://www.mathnet.ru/rus/rcd/v28/i1/p107
Эта публикация цитируется в следующих 2 статьяx:
E.M. Artemova, I.A. Bizyaev, “Dynamics of a multilink wheeled vehicle: Partial solutions and unbounded speedup”, International Journal of Non-Linear Mechanics, 165 (2024), 104774
Evgeniya Mikishanina, “The problem of acceleration in the dynamics of a double-link wheeled vehicle with arbitrarily directed periodic excitation”, Theor. Appl. Mech., 50:2 (2023), 205–221