Аннотация:
In 1976 S.Newhouse, J.Palis and F.Takens introduced a stable arc joining two
structurally stable systems on a manifold. Later in 1983 they proved that all points of a regular
stable arc are structurally stable diffeomorphisms except for a finite number of bifurcation
diffeomorphisms which have no cycles, no heteroclinic tangencies and which have a unique
nonhyperbolic periodic orbit, this orbit being the orbit of a noncritical saddle-node or a flip
which unfolds generically on the arc. There are examples of Morse – Smale diffeomorphisms
on manifolds of any dimension which cannot be joined by a stable arc. There naturally
arises the problem of finding an invariant defining the equivalence classes of Morse – Smale
diffeomorphisms with respect to connectedness by a stable arc. In the present review we present
the classification results for Morse – Smale diffeomorphisms with respect to stable isotopic
connectedness and obstructions to existence of stable arcs including the authors’ recent results.
The research on the obstructions to existence of a stable arc between isotopic Morse – Smale
diffeomorphisms is supported by RSF (Grant No. 21-11-00010), and the research on components of
the stable connection of gradient-like diffeomorphisms of surfaces is supported by the Laboratory of
Dynamical Systems and Applications NRU HSE, by the Ministry of Science and Higher Education
of the Russian Federation (ag. 075-15-2019-1931) and by the Foundation for the Advancement of
Theoretical Physics and Mathematics “BASIS” (project 19-7-1-15-1).
Поступила в редакцию: 23.10.2021 Принята в печать: 14.01.2022
Образец цитирования:
Timur V. Medvedev, Elena V. Nozdrinova, Olga V. Pochinka, “Components of Stable Isotopy Connectedness
of Morse – Smale Diffeomorphisms”, Regul. Chaotic Dyn., 27:1 (2022), 77–97
\RBibitem{MedNozPoc22}
\by Timur V. Medvedev, Elena V. Nozdrinova, Olga V. Pochinka
\paper Components of Stable Isotopy Connectedness
of Morse – Smale Diffeomorphisms
\jour Regul. Chaotic Dyn.
\yr 2022
\vol 27
\issue 1
\pages 77--97
\mathnet{http://mi.mathnet.ru/rcd1154}
\crossref{https://doi.org/10.1134/S1560354722010087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4376700}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000751378200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124525123}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1154
https://www.mathnet.ru/rus/rcd/v27/i1/p77
Эта публикация цитируется в следующих 5 статьяx:
E V Kruglov, Iu E Petrova, O V Pochinka, “Scenario of a mildly stable transition from codimensional one Anosov diffeomorphism to a DA-diffeomorphism”, Nonlinearity, 38:2 (2025), 025021
Д. А. Баранов, Е. В. Ноздринова, О. В. Починка, “Сценарий устойчивого перехода от изотопного тождественному диффеоморфизма тора к косому произведению грубых преобразований окружности”, Уфимск. матем. журн., 16:1 (2024), 11–23; D. A. Baranov, E. V. Nozdrinova, O. V. Pochinka, “Scenario of stable transition from diffeomorphism of torus isotopic to identity one to skew product of rough transformations of circle”, Ufa Math. J., 16:1 (2024), 10–22
E. V. Nozdrinova, O. V. Pochinka, E. V. Tsaplina, “Construction of Smooth Source–Sink Arcs in the Space of Diffeomorphisms of a Two-Dimensional Sphere”, Dokl. Math., 2024
A.A. Nozdrinov, E.V. Nozdrinova, O.V. Pochinka, “Stable isotopy connectivity of gradient-like diffeomorphisms of 2-torus”, Journal of Geometry and Physics, 2024, 105352
Е. В. Ноздринова, О. В. Починка, Е. В. Цаплина, “Построение гладких дуг “источник–сток” в пространстве диффеоморфизмов двумерной сферы”, Докл. РАН. Матем., информ., проц. упр., 519 (2024), 39–45 [E. V. Nozdrinova, O. V. Pochinka, E. V. Tsaplina, “Construction of smooth “source-sink” arcs in the space of diffeomorphisms of a two-dimensional sphere”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 39–45]