Аннотация:
In this paper, we investigate the dynamics of systems describing the rolling without slipping and spinning (rubber rolling) of various rigid bodies on a plane and a sphere. It is shown that a hierarchy of possible types of dynamical behavior arises depending on the body’s surface geometry and mass distribution. New integrable cases and cases of existence of an invariant measure are found. In addition, these systems are used to illustrate that the existence of several nontrivial involutions in reversible dissipative systems leads to quasi-Hamiltonian behavior.
This work was carried out at the Udmurt State University and was supported by Grant of the President of the Russian Federation for Support of Leading Scientific Schools NSh-2519.2012.1 “Dynamical Systems of Classical Mechanics and Control Problems”, Analytic Departmental Target Program “Development of Scientific Potential of Higher Schools” (1.1248.2011), Analytic Depart-mental Target Program ”Development of Scientific Potential of Higher Schools” (1.7734.2013), Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Agreement №14.A37.21.1935).
Поступила в редакцию: 12.03.2013 Принята в печать: 08.05.2013
Образец цитирования:
Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328
\RBibitem{BorMamBiz13}
\by Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev
\paper The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 3
\pages 277--328
\mathnet{http://mi.mathnet.ru/rcd114}
\crossref{https://doi.org/10.1134/S1560354713030064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3061810}
\zmath{https://zbmath.org/?q=an:06197382}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319763900006}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd114
https://www.mathnet.ru/rus/rcd/v18/i3/p277
Эта публикация цитируется в следующих 111 статьяx:
Satyam Panda, Souvik Chakraborty, Budhaditya Hazra, “A general framework for symplectic geometric integration for stochastically excited Hamiltonian systems on manifolds”, International Journal of Non-Linear Mechanics, 170 (2025), 105001
Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaot. Dyn., 2025
A. G. Agúndez, D. García-Vallejo, E. Freire, “Analytical and numerical stability analysis of a toroidal wheel with nonholonomic constraints”, Nonlinear Dyn, 112:4 (2024), 2453
Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024
Luis C. García-Naranjo, Rafael Ortega, Antonio J. Ureña, “Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 29:5 (2024), 751–763
Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — a Study of Integrable Cases”, Regul. Chaotic Dyn., 28:1 (2023), 62–77
Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk
with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106
A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion
of a Dynamically Symmetric Spherical Top
with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17
William Clark, Anthony Bloch, “Existence of invariant volumes in nonholonomic systems subject to nonlinear constraints”, JGM, 15:1 (2023), 256
Eleni Margariti, Gemma Quinn, Dimitars Jevtics, Benoit Guilhabert, Martin D. Dawson, Michael J. Strain, “Continuous roller transfer-printing and automated metrology of >75,000 micro-LED pixels in a single shot”, Opt. Mater. Express, 13:8 (2023), 2236
Rohan Prasad, Satyam Panda, Budhaditya Hazra, “A new symplectic integrator for stochastic Hamiltonian systems on manifolds”, Probabilistic Engineering Mechanics, 74 (2023), 103526
Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)
Zhixiang Li, Zhen Zhao, Hanglan Zhang, Qingyun Wang, “Variable boundary contact problem between pulley and flexible rope”, International Journal of Non-Linear Mechanics, 152 (2023), 104399
Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — Nonholonomic Systems
with Invariant Measures”, Regul. Chaotic Dyn., 27:4 (2022), 424–442
Ivan A. Bizyaev, Ivan S. Mamaev, “Permanent Rotations in Nonholonomic Mechanics.
Omnirotational Ellipsoid”, Regul. Chaotic Dyn., 27:6 (2022), 587–612
Firdaus E. Udwadia, Nami Mogharabin, “New Directions in Modeling and Computational Methods for Complex Mechanical Dynamical Systems”, Processes, 10:8 (2022), 1560
Garcia-Naranjo L. U. I. S. C. Vermeeren M. A. T. S., “Structure Preserving Discretization of Time-Reparametrized Hamiltonian Systems With Application to Nonholonomic Mechanics”, J. Comput. Dynam., 8:3 (2021), 241–271
Stefan Rauch-Wojciechowski, Maria Przybylska, “On Dynamics of Jellet's Egg. Asymptotic Solutions Revisited”, Regul. Chaotic Dyn., 25:1 (2020), 40–58
Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236