Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2013, том 18, выпуск 3, страницы 277–328
DOI: https://doi.org/10.1134/S1560354713030064
(Mi rcd114)
 

Эта публикация цитируется в 109 научных статьях (всего в 111 статьях)

The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere

Alexey V. Borisovabc, Ivan S. Mamaevcba, Ivan A. Bizyaeva

a Institute of Computer Science; Laboratory of Nonlinear Analysis and the Design of New Types of Vehicles, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
c Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia
Список литературы:
Аннотация: In this paper, we investigate the dynamics of systems describing the rolling without slipping and spinning (rubber rolling) of various rigid bodies on a plane and a sphere. It is shown that a hierarchy of possible types of dynamical behavior arises depending on the body’s surface geometry and mass distribution. New integrable cases and cases of existence of an invariant measure are found. In addition, these systems are used to illustrate that the existence of several nontrivial involutions in reversible dissipative systems leads to quasi-Hamiltonian behavior.
Ключевые слова: nonholonomic constraint, tensor invariant, first integral, invariant measure, integrability, conformally Hamiltonian system, rubber rolling, reversible, involution.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации NSh-2519.2012.1
1.1248.2011
1.7734.2013
14.A37.21.1935
This work was carried out at the Udmurt State University and was supported by Grant of the President of the Russian Federation for Support of Leading Scientific Schools NSh-2519.2012.1 “Dynamical Systems of Classical Mechanics and Control Problems”, Analytic Departmental Target Program “Development of Scientific Potential of Higher Schools” (1.1248.2011), Analytic Depart-mental Target Program ”Development of Scientific Potential of Higher Schools” (1.7734.2013), Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Agreement №14.A37.21.1935).
Поступила в редакцию: 12.03.2013
Принята в печать: 08.05.2013
Реферативные базы данных:
Тип публикации: Статья
MSC: 37J60, 37J35
Язык публикации: английский
Образец цитирования: Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328
Цитирование в формате AMSBIB
\RBibitem{BorMamBiz13}
\by Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev
\paper The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 3
\pages 277--328
\mathnet{http://mi.mathnet.ru/rcd114}
\crossref{https://doi.org/10.1134/S1560354713030064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3061810}
\zmath{https://zbmath.org/?q=an:06197382}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319763900006}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd114
  • https://www.mathnet.ru/rus/rcd/v18/i3/p277
  • Эта публикация цитируется в следующих 111 статьяx:
    1. Satyam Panda, Souvik Chakraborty, Budhaditya Hazra, “A general framework for symplectic geometric integration for stochastically excited Hamiltonian systems on manifolds”, International Journal of Non-Linear Mechanics, 170 (2025), 105001  crossref
    2. Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaot. Dyn., 2025  crossref
    3. A. G. Agúndez, D. García-Vallejo, E. Freire, “Analytical and numerical stability analysis of a toroidal wheel with nonholonomic constraints”, Nonlinear Dyn, 112:4 (2024), 2453  crossref
    4. Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024  crossref
    5. Luis C. García-Naranjo, Rafael Ortega, Antonio J. Ureña, “Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 29:5 (2024), 751–763  mathnet  crossref
    6. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — a Study of Integrable Cases”, Regul. Chaotic Dyn., 28:1 (2023), 62–77  mathnet  crossref  mathscinet
    7. Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106  mathnet  crossref  mathscinet
    8. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
    9. William Clark, Anthony Bloch, “Existence of invariant volumes in nonholonomic systems subject to nonlinear constraints”, JGM, 15:1 (2023), 256  crossref
    10. Satyam Panda, Ankush Gogoi, Budhaditya Hazra, Vikram Pakrashi, “Geometry preserving Ito-Taylor formulation for stochastic hamiltonian dynamics on manifolds”, Applied Mathematical Modelling, 119 (2023), 626  crossref
    11. Eleni Margariti, Gemma Quinn, Dimitars Jevtics, Benoit Guilhabert, Martin D. Dawson, Michael J. Strain, “Continuous roller transfer-printing and automated metrology of >75,000 micro-LED pixels in a single shot”, Opt. Mater. Express, 13:8 (2023), 2236  crossref
    12. Rohan Prasad, Satyam Panda, Budhaditya Hazra, “A new symplectic integrator for stochastic Hamiltonian systems on manifolds”, Probabilistic Engineering Mechanics, 74 (2023), 103526  crossref
    13. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)  crossref
    14. Zhixiang Li, Zhen Zhao, Hanglan Zhang, Qingyun Wang, “Variable boundary contact problem between pulley and flexible rope”, International Journal of Non-Linear Mechanics, 152 (2023), 104399  crossref
    15. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measures”, Regul. Chaotic Dyn., 27:4 (2022), 424–442  mathnet  crossref  mathscinet
    16. Ivan A. Bizyaev, Ivan S. Mamaev, “Permanent Rotations in Nonholonomic Mechanics. Omnirotational Ellipsoid”, Regul. Chaotic Dyn., 27:6 (2022), 587–612  mathnet  crossref  mathscinet
    17. Firdaus E. Udwadia, Nami Mogharabin, “New Directions in Modeling and Computational Methods for Complex Mechanical Dynamical Systems”, Processes, 10:8 (2022), 1560  crossref
    18. Garcia-Naranjo L. U. I. S. C. Vermeeren M. A. T. S., “Structure Preserving Discretization of Time-Reparametrized Hamiltonian Systems With Application to Nonholonomic Mechanics”, J. Comput. Dynam., 8:3 (2021), 241–271  crossref  mathscinet  isi  scopus
    19. Stefan Rauch-Wojciechowski, Maria Przybylska, “On Dynamics of Jellet's Egg. Asymptotic Solutions Revisited”, Regul. Chaotic Dyn., 25:1 (2020), 40–58  mathnet  crossref
    20. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:401
    Список литературы:98
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025