Аннотация:
We consider a planar pendulum with an oscillating suspension point and with the bob
carrying an electric charge q. The pendulum oscillates above a fixed point with a charge Q. The dynamics is studied as a system in the small parameter ϵ given by the amplitude of the suspension point. The system depends on two other parameters, α and β, the first related to the frequency of
the oscillation of the suspension point and the second being the ratio of charges. We study the parametric
stability of the linearly stable equilibria and use the Deprit - Hori
method to construct the boundary surfaces of the stability/instability regions.
Образец цитирования:
Gerson Cruz Araujo, Hildeberto E. Cabral, “Parametric Stability of a Charged Pendulum
with an Oscillating Suspension Point”, Regul. Chaotic Dyn., 26:1 (2021), 39–60
\RBibitem{AraCab21}
\by Gerson Cruz Araujo, Hildeberto E. Cabral
\paper Parametric Stability of a Charged Pendulum
with an Oscillating Suspension Point
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 1
\pages 39--60
\mathnet{http://mi.mathnet.ru/rcd1101}
\crossref{https://doi.org/10.1134/S1560354721010032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4209917}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614454700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100415718}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1101
https://www.mathnet.ru/rus/rcd/v26/i1/p39
Эта публикация цитируется в следующих 8 статьяx:
Shreyansh S. Dave, Sanatan Digal, Vinod Mamale, “Parametric resonance in Abelian and non-Abelian gauge fields via spacetime oscillations”, Phys. Rev. D, 109:7 (2024)
D. D. Kulminskiy, M. V. Malyshev, “Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point”, Rus. J. Nonlin. Dyn., 20:4 (2024), 553–563
Adecarlos C. Carvalho, Gerson C. Araujo, “Parametric Resonance of a Charged Pendulum
with a Suspension Point Oscillating Between Two Vertical
Charged Lines”, Regul. Chaotic Dyn., 28:3 (2023), 321–331
Ivan Polekhin, “Asymptotically stable non-falling solutions of the Kapitza–Whitney pendulum”, Meccanica, 58 (2023), 1205–1215
Hildeberto E. Cabral, Lúcia Brandão Dias, Applied Mathematical Sciences, 218, Normal Forms and Stability of Hamiltonian Systems, 2023, 261
Denilson Paulo Souza dos Santos, José Laudelino de Menezes Neto, Vinicius Tavares Azevedo, Jorge Kennety Silva Formiga, “Linear stability analysis in tether system using its Hamiltonian function”, Eur. Phys. J. Spec. Top., 232:18-19 (2023), 3175
Ivan Yu. Polekhin, “The Spherical Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76
H. E. Cabral, A. C. Carvalho, “Parametric Resonance in the Oscillations of a Charged
Pendulum Inside a Uniformly Charged Circular Ring”, Rus. J. Nonlin. Dyn., 18:4 (2022), 513–526