Аннотация:
We investigate stability properties of a type of periodic solutions of the NN-vortex problem on general domains Ω⊂R2. The solutions in question bifurcate from rigidly rotating configurations of the whole-plane vortex system and a critical point a0∈Ω of the Robin function associated to the Dirichlet Laplacian of Ω. Under a linear stability condition on the initial rotating configuration, which can be verified for examples consisting of up to 4 vortices, we show that the linear stability of the induced solutions is solely determined by the type of the critical point a0. If a0 is a saddle, they are unstable. If a0 is a nondegenerate maximum or minimum, they are stable in a certain linear sense. Since nondegenerate minima exist generically, our results apply to most domains Ω. The influence of the general domain Ω can be seen as a perturbation breaking the symmetries of the N-vortex system on R2. Symplectic reduction is not applicable and our analysis on linearized stability relies on the notion of approximate eigenvectors. Beyond linear stability, Herman's last geometric theorem allows us to prove the existence of isoenergetically orbitally stable solutions in the case of N=2 vortices.
Образец цитирования:
Björn Gebhard, Rafael Ortega, “Stability of Periodic Solutions of the N-vortex Problem in General Domains”, Regul. Chaotic Dyn., 24:6 (2019), 649–670
\RBibitem{GebOrt19}
\by Bj\"orn Gebhard, Rafael Ortega
\paper Stability of Periodic Solutions of the $N$-vortex Problem in General Domains
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 6
\pages 649--670
\mathnet{http://mi.mathnet.ru/rcd1031}
\crossref{https://doi.org/10.1134/S1560354719060054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511339400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076229642}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1031
https://www.mathnet.ru/rus/rcd/v24/i6/p649
Эта публикация цитируется в следующих 5 статьяx:
Francesco Grotto, Umberto Pappalettera, “Burst of Point Vortices and Non-uniqueness of 2D Euler Equations”, Arch Rational Mech Anal, 245:1 (2022), 89
E. Artemova, A. Kilin, “Nonlinear stability of regular vortex polygons in a Bose-Einstein condensate”, Phys. Fluids, 33:12 (2021), 127105
Q. Wang, “The n-vortex problem on a Riemann sphere”, Commun. Math. Phys., 385:1 (2021), 565–593
Elizaveta M. Artemova, Alexander A. Kilin, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
E. M. Artemova, E. V. Vetchanin, “Control of the motion of a circular cylinder in an ideal fluid using a source”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:4 (2020), 604–617