This work was supported by the Australian Research Council Grants DP170100786 and DP180100201 (Shparlinski) and by the Russian Science Foundation Grant 18-41-05003 (Vyugin).
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/qjm6
Эта публикация цитируется в следующих 7 статьяx:
Colby Austin Brown, “An almost linear time algorithm testing whether the Markoff graph modulo p is connected”, Res. number theory, 11:1 (2025)
Joseph H. Silverman, “A heuristic subexponential algorithm to find paths in Markoff graphs over finite fields”, Res. number theory, 11:1 (2025)
Jillian Eddy, Elena Fuchs, Matthew Litman, Daniel E. Martin, Nico Tripeny, “Connectivity of Markoff mod‐p graphs and maximal divisors”, Proceedings of London Math Soc, 130:2 (2025)
Elena Fuchs, Matthew Litman, Joseph H. Silverman, Austin Tran, “Orbits on K3 Surfaces of Markoff Type”, Experimental Mathematics, 2023, 1
Bryce Kerr, Jorge Mello, Igor E. Shparlinski, “An effective local-global principle and additive combinatorics in finite fields”, JAMA, 2023
Sergei V. Konyagin, Igor E. Shparlinski, Ilya V. Vyugin, Analysis at Large, 2022, 273
Matthew de Courcy-Ireland, Michael Magee, “Kesten–McKay law for the Markoff surface mod p”, Annales Henri Lebesgue, 4 (2021), 227