Аннотация:
Let C be the unit circle {z:|z|=1} and Qn(z) be an arbitrary C-polynomial (i.e., all its zeros z1,…,zn∈C).
We prove that the norm of the logarithmic derivative Q′n/Qn in the complex space L2[−1,1] is greater than 1/8.
Ключевые слова:
logarithmic derivative, C-polynomial, simplest fraction, norm, unit circle.
Образец цитирования:
M. A. Komarov, “A lower bound for the L2[−1,1]-norm of the logarithmic derivative of polynomials with zeros on the unit circle”, Пробл. анал. Issues Anal., 8(26):2 (2019), 67–72
\RBibitem{Kom19}
\by M.~A.~Komarov
\paper A lower bound for the $L_2[-1,\,1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle
\jour Пробл. анал. Issues Anal.
\yr 2019
\vol 8(26)
\issue 2
\pages 67--72
\mathnet{http://mi.mathnet.ru/pa264}
\crossref{https://doi.org/10.15393/j3.art.2019.6030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471801400005}
\elib{https://elibrary.ru/item.asp?id=38224562}