Аннотация:
We consider integral equations
with operator measures on a segment in the infinite-dimensional case.
These measures are defined on Borel sets of the segment and take values in the set of linear bounded operators acting in a separable Hilbert space.
We prove that these equations have unique solutions
and we construct a family of evolution operators. We apply the obtained results to the study of linear relations generated by an integral equation and boundary conditions.
In terms of boundary values,
we obtain necessary and sufficient conditions under which these relations TT possess the properties: TT is a closed relation; TT is an invertible relation; the kernel of TT is finite-dimensional;
the range of TT is closed; TT is a continuously invertible relation and others. We give examples to illustrate the obtained results.
Ключевые слова:
Hilbert space, integral equation, boundary value problem, operator measure, linear relation.
Поступила в редакцию: 21.04.2017 Исправленный вариант: 15.06.2017 Принята в печать: 19.06.2017
Образец цитирования:
V. M. Bruk, “Boundary value problems for integral equations with operator measures”, Пробл. анал. Issues Anal., 6(24):1 (2017), 19–40
\RBibitem{Bru17}
\by V.~M.~Bruk
\paper Boundary value problems for integral equations with operator measures
\jour Пробл. анал. Issues Anal.
\yr 2017
\vol 6(24)
\issue 1
\pages 19--40
\mathnet{http://mi.mathnet.ru/pa214}
\crossref{https://doi.org/10.15393/j3.art.2017.3810}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409223900003}
\elib{https://elibrary.ru/item.asp?id=29450652}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa214
https://www.mathnet.ru/rus/pa/v24/i1/p19
Эта публикация цитируется в следующих 6 статьяx:
Vladislav Bruk, “Linear relations generated by integral equations with Nevanlinna operator measures”, Filomat, 38:4 (2024), 1153
Vladislav Bruk, “On characteristic functions of generalized resolvents generated by integral equations with operator measures”, Filomat, 37:23 (2023), 7699
Vladislav Bruk, “Generalized resolvents of linear relations generated by integral equations with operator measures”, Filomat, 36:14 (2022), 4793
V. M. Bruk, “On self-adjoint and invertible linear relations generated by integral equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 1, 106–121
Vladislav M. Bruk, “Dissipative extensions of linear relations generated by integral equations with operator measures”, Журн. матем. физ., анал., геом., 16:4 (2020), 381–401
V. M. Bruk, “Generalized resolvents of operators generated by integral equations”, Пробл. анал. Issues Anal., 7(25):2 (2018), 20–38