Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2024, том 20, номер 5, страницы 813–825
DOI: https://doi.org/10.20537/nd241211
(Mi nd924)
 

NONLINEAR SYSTEMS IN ROBOTICS

On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle

A. V. Gasnikovabcd, M. S. Alkousabd, A. V. Lobanovedf, Y. V. Dorndg, F. S. Stonyakinhbd, I. A. Kuruzovb, S. R. Singhi

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
c Caucasus Mathematical Center, Adyghe State University, ul. Pervomaiskaya 208, Maykop, 385000 Russia
d Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141701 Russia
e Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205 Russia
f ISP RAS Research Center for Trusted Artificial Intelligence, ul. Alexandra Solzhenitsyna 25, Moscow, 109004 Russia
g Institute for Artificial Intelligence, Lomonosov Moscow State University, Lomonosovsky pr. 27/1, Moscow, 119192 Russia
h V. I. Vernadsky Crimean Federal University, Av. Academician Vernandsky 4, Simferopol, 295007 Russia
i Times School of Media, Bennett University, Plot Nos 8, 11, Greater Noida, Uttar Pradesh, 201310 India
Список литературы:
Аннотация: Frequently, when dealing with many machine learning models, optimization problems appear to be challenging due to a limited understanding of the constructions and characterizations of the objective functions in these problems. Therefore, major complications arise when dealing with first-order algorithms, in which gradient computations are challenging or even impossible in various scenarios. For this reason, we resort to derivative-free methods (zeroth-order methods). This paper is devoted to an approach to minimizing quasi-convex functions using a recently proposed (in [56]) comparison oracle only. This oracle compares function values at two points and tells which is larger, thus by the proposed approach, the comparisons are all we need to solve the optimization problem under consideration. The proposed algorithm to solve the considered problem is based on the technique of comparison-based gradient direction estimation and the comparison-based approximation normalized gradient descent. The normalized gradient descent algorithm is an adaptation of gradient descent, which updates according to the direction of the gradients, rather than the gradients themselves. We proved the convergence rate of the proposed algorithm when the objective function is smooth and strictly quasi-convex in Rn, this algorithm needs O(nD2ε2log(nDε)) comparison queries to find an ε-approximate of the optimal solution, where D is an upper bound of the distance between all generated iteration points and an optimal solution.
Ключевые слова: quasi-convex function, gradient-free algorithm, smooth function, comparison oracle, normalized gradient descent
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации 70-2021-00143
This research has been financially supported by The Analytical Center for the Government of the Russian Federation (Agreement No. 70-2021-00143 01.11.2021, IGK 000000D730324P540002).
Поступила в редакцию: 13.11.2024
Принята в печать: 26.11.2024
Тип публикации: Статья
MSC: 90C26, 90C30, 90C56
Язык публикации: английский
Образец цитирования: A. V. Gasnikov, M. S. Alkousa, A. V. Lobanov, Y. V. Dorn, F. S. Stonyakin, I. A. Kuruzov, S. R. Singh, “On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle”, Rus. J. Nonlin. Dyn., 20:5 (2024), 813–825
Цитирование в формате AMSBIB
\RBibitem{GasAlkLob24}
\by A. V. Gasnikov, M. S. Alkousa, A. V. Lobanov, Y. V. Dorn, F. S. Stonyakin, I. A. Kuruzov, S.~R.~Singh
\paper On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle
\jour Rus. J. Nonlin. Dyn.
\yr 2024
\vol 20
\issue 5
\pages 813--825
\mathnet{http://mi.mathnet.ru/nd924}
\crossref{https://doi.org/10.20537/nd241211}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd924
  • https://www.mathnet.ru/rus/nd/v20/i5/p813
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:42
    PDF полного текста:12
    Список литературы:14
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025