|
Nonlinear physics and mechanics
On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
B. S. Bardin Moscow Aviation Institute (National Research University),
Volokolamskoye sh. 4, Moscow, 125080 Russia
Аннотация:
The problem of the orbital stability of periodic motions of a heavy rigid body with a fixed
point is investigated. The periodic motions are described by a particular solution obtained by
D. N. Bobylev and V. A. Steklov and lie on the zero level set of the area integral. The problem of
nonlinear orbital stability is studied. It is shown that the domain of possible parameter values
is separated into two regions: a region of orbital stability and a region of orbital instability. At
the boundary of these regions, the orbital instability of the periodic motions takes place.
Ключевые слова:
Bobylev – Steklov case, periodic motions, orbital stability, symplectic map, normal form, resonances
Поступила в редакцию: 11.12.2023 Принята в печать: 09.01.2024
Образец цитирования:
B. S. Bardin, “On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case”, Rus. J. Nonlin. Dyn., 20:1 (2024), 127–140
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd884 https://www.mathnet.ru/rus/nd/v20/i1/p127
|
Статистика просмотров: |
Страница аннотации: | 60 | PDF полного текста: | 17 | Список литературы: | 21 |
|