Аннотация:
Показано, что если n,q,P – натуральные числа, ε>0, f – многочлен степени n с целыми коэффициентами, в совокупности взаимно простыми с q, то число целых x∈[0,P), удовлетворяющих сравнению f(x)≡0(modq), не превосходит C(Pq−1/n+Pε), где C зависит только от n и ε. Получены оценки для отклонения распределения множества решений указанного сравнения от равномерного на промежутке [0,q).
Библиография: 7 названий.
Yoshinori Aono, Manindra Agrawal, Takakazu Satoh, Osamu Watanabe, “On the optimality of lattices for the coppersmith technique”, AAECC, 29:2 (2018), 169
Arturas Dubickas, Min Sha, Igor Shparlinski, “Explicit Form of Cassels'p-adic Embedding Theorem for Number Fields”, Can. j. math., 67:5 (2015), 1046
Henry Cohn, Nadia Heninger, “Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding”, Advances in Mathematics of Communications, 9:3 (2015), 311
Yoshinori Aono, Manindra Agrawal, Takakazu Satoh, Osamu Watanabe, Lecture Notes in Computer Science, 7372, Information Security and Privacy, 2012, 376
ZHIXIONG CHEN, ARNE WINTERHOF, “ON THE DISTRIBUTION OF PSEUDORANDOM NUMBERS AND VECTORS DERIVED FROM EULER–FERMAT QUOTIENTS”, Int. J. Number Theory, 08:03 (2012), 631
Javier Cilleruelo, Moubariz Z. Garaev, Alina Ostafe, Igor E. Shparlinski, “On the concentration of points of polynomial maps and applications”, Math. Z., 272:3-4 (2012), 825
Prakash, G, “The large sieve inequality for integer polynomial amplitudes”, Journal of Number Theory, 129:2 (2009), 428
Alexander May, Information Security and Cryptography, The LLL Algorithm, 2009, 315
Moubariz Garaev, Florian Luca, Igor Shparlinski, “Character sums and congruences with 𝑛!”, Trans. Amer. Math. Soc., 356:12 (2004), 5089
Don Coppersmith, Lecture Notes in Computer Science, 2146, Cryptography and Lattices, 2001, 20
Phong Q. Nguyen, Jacques Stern, Lecture Notes in Computer Science, 2146, Cryptography and Lattices, 2001, 146