Аннотация:
Строится набор примеров рельефов дна, для которых существуют захваченные волны – квазимоды волнового оператора ∇D(x,y)∇.
Библиография: 9 названий.
Образец цитирования:
В. С. Матвеев, “Асимптотические собственные функции оператора ∇D(x,y)∇, отвечающие лиувиллевым метрикам, и волны на воде, захваченные донными неоднородностями”, Матем. заметки, 64:3 (1998), 414–422; Math. Notes, 64:3 (1998), 357–363
\RBibitem{Mat98}
\by В.~С.~Матвеев
\paper Асимптотические собственные функции оператора $\nabla D(x,y)\nabla$, отвечающие лиувиллевым метрикам, и волны на воде, захваченные донными неоднородностями
\jour Матем. заметки
\yr 1998
\vol 64
\issue 3
\pages 414--422
\mathnet{http://mi.mathnet.ru/mzm1412}
\crossref{https://doi.org/10.4213/mzm1412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680205}
\zmath{https://zbmath.org/?q=an:0926.35103}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 3
\pages 357--363
\crossref{https://doi.org/10.1007/BF02314845}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079258700010}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm1412
https://doi.org/10.4213/mzm1412
https://www.mathnet.ru/rus/mzm/v64/i3/p414
Эта публикация цитируется в следующих 12 статьяx:
Vladislav Rykhlov, Anatoly Anikin, “High-frequency two-dimensional asymptotic standing coastal trapped waves in nearly integrable case”, Lett Math Phys, 115:1 (2025)
A.I. Klevin, A.V. Tsvetkova, “Nonlinear Long Standing Waves with Support Bounded by Caustics or Localized in the Vicinity of a Two-Link Trajectory”, Russ. J. Math. Phys., 30:4 (2023), 543
А. Ю. Аникин, С. Ю. Доброхотов, В. Е. Назайкинский, А. В. Цветкова, “Нестандартные лиувиллевы торы и каустики в асимптотиках в виде функций Эйри и Бесселя для двумерных стоячих береговых волн”, Алгебра и анализ, 33:2 (2021), 5–34; A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for two-dimensional standing coastal waves”, St. Petersburg Math. J., 33:2 (2022), 185–205
А. Ю. Аникин, С. Ю. Доброхотов, В. Е. Назайкинский, А. В. Цветкова, “Асимптотики собственных функций двумерного
оператора $\nabla D(x)\nabla$, связанные с бильярдами
с полужесткими стенками, и захваченные береговые волны”, Матем. заметки, 105:5 (2019), 792–797; A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Asymptotics, Related to Billiards with Semi-Rigid Walls, of Eigenfunctions of the $\nabla D(x)\nabla$ Operator in Dimension 2 and Trapped Coastal Waves”, Math. Notes, 105:5 (2019), 789–794
Anikin A.Yu. Dobrokhotov S.Yu. Nazaikinskii V.E. Tsvetkova A.V., “Asymptotic Eigenfunctions of the Operator Delta D(X)Delta Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards With Semi-Rigid Walls”, Differ. Equ., 55:5 (2019), 644–657
Dobrokhotov S.Yu. Nazaikinskii V.E., “Asymptotic Localized Solutions of the Shallow Water Equations Over a Nonuniform Bottom”, AIP Conference Proceedings, 2048, ed. Pasheva V. Popivanov N. Venkov G., Amer Inst Physics, 2018, 040026
Mikes J. Stepanova E. Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566
Dobrokhotov S.Yu. Lozhnikov D.A. Vargas C.A., “Asymptotics of Waves on the Shallow Water Generated by Spatially-Localized Sources and Trapped by Underwater Ridges”, Russ. J. Math. Phys., 20:1 (2013), 11–24
Dobrokhotov S.Yu. Lozhnikov D.A. Nazaikinskii V.E., “Wave Trains Associated with a Cascade of Bifurcations of Space-Time Caustics Over Elongated Underwater Banks”, Math. Model. Nat. Phenom., 8:5 (2013), 1–12
Matveev V.S., “Pseudo-Riemannian Metrics on Closed Surfaces Whose Geodesic Flows Admit Nontrivial Integrals Quadratic in Momenta, and Proof of the Projective Obata Conjecture for Two-Dimensional Pseudo-Riemannian Metrics”, J. Math. Soc. Jpn., 64:1 (2012), 107–152
Dobrokhotov S. Rouleux M., “The Semi-Classical Maupertuis-Jacobi Correspondence for Quasi-Periodic Hamiltonian Flows with Applications to Linear Water Waves Theory”, Asymptotic Anal., 74:1-2 (2011), 33–73
С. Ю. Доброхотов, М. Руло, “Квазиклассический аналог принципа Мопертюи–Якоби и его приложение к линейной теории волн на воде”, Матем. заметки, 87:3 (2010), 458–463; S. Yu. Dobrokhotov, M. Rouleux, “The Semiclassical Maupertuis–Jacobi Correspondence and Applications to Linear Water Waves Theory”, Math. Notes, 87:3 (2010), 430–435