Аннотация:
В статье рассмотрена нелинейная задача для уравнения типа Грушина. Используя тождество Похожаева, докажем для таких уравнений некоторые результаты
об отсутствии нетривиальных решений. Остальная часть связана с гладкостью
собственных функций вблизи границы. Для получения некоторых результатов используется явное выражение фундаментального решения и преобразования Кельвина
Библиография: 9 названий.
N. Q. Nga, N. M. Tri, D. A. Tuan, “Pólya–Szegö type inequality and imbedding theorems for weighted Sobolev spaces”, Anal.Math.Phys., 14:2 (2024)
D. T. Luyen, N. M. Tri, D. A. Tuan, “Nontrivial solutions of the Dirichlet problems for semilinear degenerate elliptic equations”, Матем. заметки, 116:5 (2024), 1051–1063; D. T. Luyen, N. M. Tri, D. A. Tuan, “Nontrivial solutions of the Dirichlet problems for semilinear degenerate elliptic equations”, Math. Notes, 116:5 (2024), 1051–1063
Luyen D.T. Cuong Ph.V., “Multiple Solutions to Boundary Value Problems For Semilinear Strongly Degenerate Elliptic Differential Equations”, Rend. Circ. Mat. Palermo, 71:1 (2022), 495–513
Duong Trong Luyen, Ha Tien Ngoan, Phung Thi Kim Yen, “Existence and Non-Existence of Solutions For Semilinear Bi-Delta(Gamma)-Laplace Equation”, Bull. Malays. Math. Sci. Soc., 45:2 (2022), 819–838
Alfalqi S., “Non-Existence Results For Stable Solutions to Weighted Elliptic Systems Including Advection Terms”, Mathematics, 10:2 (2022), 252
Duong Trong Luyen, Le Thi Hong Hanh, “Infinitely many solutions for perturbed Λγ-Laplace equations”, Georgian Mathematical Journal, 29:6 (2022), 863
Duong Trong Luyen, Le Thi Hong Hanh, “Three nontrivial solutions of boundary value problems for semilinear Δγ−Laplace equation”, bspm, 40 (2022), 1
Xiaohuan Wang, Jihui Zhang, “Optimal Regularity of a Degenerate Elliptic Equation”, J Nonlinear Math Phys, 30:1 (2022), 254
Duong Trong Luyen, “Infinitely Many Solutions For Semilinear Strongly Degenerate Elliptic Differential Equations With Lack of Symmetry”, Acta Appl. Math., 175:1 (2021), 3
Duong Trong Luyen, Ninh Tien Nam, “Infinitely Many Solutions For Fourth-Order Semilinear Delta(Gamma) - Laplace Equation in R-N”, J. Elliptic Parabol. Equat., 7:2 (2021), 977–988
Lamberti P.D., Luzzini P., Musolino P., “Shape Perturbation of Grushin Eigenvalues”, J. Geom. Anal., 31:11 (2021), 10679–10717
Hamdani M.K., “Multiple Solutions For Grushin Operator Without Odd Nonlinearity”, Asian-Eur. J. Math., 13:7 (2020), 2050131
Luyen D.T. Tri N.M., “Infinitely Many Solutions For a Class of Perturbed Degenerate Elliptic Equations Involving the Grushin Operator”, Complex Var. Elliptic Equ., 65:12 (2020), 2135–2150
Duong Trong Luyen, “Existence of Nontrivial Solution For Fourth-Order Semilinear Delta(Gamma)-Laplace Equation R-N”, Electron. J. Qual. Theory Differ., 2019, no. 78, 1–12
Loiudice A., “Asymptotic Estimates and Nonexistence Results For Critical Problems With Hardy Term Involving Grushin-Type Operators”, Ann. Mat. Pura Appl., 198:6 (2019), 1909–1930
Duong Trong Luyen Nguyen Mirth Tri, “Existence of Infinitely Many Solutions For Semilinear Degenerate Schrodinger Equations”, J. Math. Anal. Appl., 461:2 (2018), 1271–1286
Rahal B. Hamdani M.K., “Infinitely Many Solutions For Delta(Alpha)-Laplaceequations With Sign-Changing Potential”, J. Fixed Point Theory Appl., 20:4 (2018), UNSP 137
Kogoj A.E. Lanconelli E., “Linear and Semilinear Problems Involving Delta(Lambda)-Laplacians”, Electron. J. Differ. Equ., 2018, no. 25, 167–178
D. T. Luyen, “Two Nontrivial Solutions of Boundary-Value Problems for Semilinear Δγ-Differential Equations”, Матем. заметки, 101:5 (2017), 815–823; D. T. Luyen, “Two Nontrivial Solutions of Boundary-Value Problems for Semilinear Δγ-Differential Equations”, Math. Notes, 101:5 (2017), 815–823
Mihailescu M., Stancu-Dumitru D., Varga C., “on the Spectrum of a Baouendi-Grushin Type Operator: An Orlicz-Sobolev Space Setting Approach”, NoDea-Nonlinear Differ. Equ. Appl., 22:5 (2015), 1067–1087