Аннотация:
We consider two examples of quantum dynamical semigroups obtained by
singular perturbations of a standard generator which are special case of
unbounded completely positive perturbations studied in detail in [11].
In Sec. 2, we propose a generalization of an example in [15] aimed to give a positive answer to a conjecture of Arveson.
In Sec. 3 we consider in
greater detail an improved and simplified construction of a nonstandard dynamical semigroup outlined
in our short communication [12].
G. G. Amosov, A. N. Pechen, E. L. Baitenov, “On reconstruction of states from evolution induced by quantum dynamical semigroups perturbed by covariant measures”, Quantum Inf. Process., 22 (2023), 401–14
A. E. Teretenkov, Yu. A. Nosal, “Higher order moments dynamics for some multimode quantum master equations”, Lobachevskii J. Math., 43:7 (2022), 1726–1739
G. G. Amosov, “On perturbations of dynamical semigroups defined by covariant completely positive measures on the semi-axis”, Anal. Math. Phys., 11:1 (2021), 27
S. N. Filippov, L. Leppäjärvi, A. N. Glinov, “Phase Covariant Qubit Dynamics and Divisibility”, Lobachevskii J. Math., 41:4, SI (2020), 617–630
“Тезисы докладов, представленных на Третьей Международной конференции по стохастическим методам”, Теория вероятн. и ее примен., 64:1 (2019), 151–204; “Abstracts of talks given at the 3rd International Conference on Stochastic Methods”, Theory Probab. Appl., 64:1 (2019), 124–169
А. С. Холево, “Генераторы квантовых одномерных диффузий”, Теория вероятн. и ее примен., 64:2 (2019), 308–327; A. S. Kholevo, “Generators of quantum one-dimensional diffusions”, Theory Probab. Appl., 64:2 (2019), 249–263
Г. Г. Амосов, Е. О. Холмогоров, “О сингулярных возмущениях полугруппы сдвигов на алгебре канонических антикоммутационных соотношений”, Изв. вузов. Матем., 2019, № 11, 76–79; G. G. Amosov, E. O. Kholmogorov, “On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations”, Russian Math. (Iz. VUZ), 63:11 (2019), 67–70
A. E. Teretenkov, “Irreversible quantum evolution with quadratic generator: review”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), 1930001