Аннотация:
We prove that the family of
all connected n-dimensional real Lie
groups is uniformly Jordan for every n.
This implies that
all algebraic (not necessarily affine) groups
over fields of characteristic zero
and some transformation groups of
complex spaces and Riemannian manifolds are Jordan.
Ключевые слова:
группа со свойством Жордана, ограниченная группа, группа Ли, алгебраическая группа, группа автоморфизмов комплексного пространства, группа изометрий риманова многообразия.
\Bibitem{Pop18}
\by V.~L.~Popov
\paper The Jordan Property for Lie Groups
and Automorphism Groups of Complex Spaces
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 811--819
\mathnet{http://mi.mathnet.ru/mzm12018}
\crossref{https://doi.org/10.1134/S0001434618050139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3830471}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800013}
\elib{https://elibrary.ru/item.asp?id=35745550}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049137914}
Jin Hong Kim, “On the Existence of Equivariant Kähler Models of Certain Compact Complex Spaces”, Матем. заметки, 115:4 (2024), 561–568; Jin Hong Kim, “On the Existence of Equivariant Kähler Models of Certain Compact Complex Spaces”, Math. Notes, 115:4 (2024), 561–568
Tatiana Bandman, Yuri G. Zarhin, “Jordan Groups and Geometric Properties of Manifolds”, Arnold Math J., 2024
А. С. Голота, “Свойство Жордана для групп бимероморфных автоморфизмов компактных кэлеровых пространств размерности 3”, Матем. сб., 214:1 (2023), 31–42; A. S. Golota, “Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds”, Sb. Math., 214:1 (2023), 28–38
T. Bandman, Yu. G. Zarhin, “Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base”, УМН, 78:1(469) (2023), 3–66; Russian Math. Surveys, 78:1 (2023), 1–64
A. S. Golota, “Finite groups acting on compact complex parallelizable manifolds”, Int. Math. Res. Not. IMRN, 2023, 1–24
Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов неунилинейчатых трехмерных кэлеровых многообразий”, Матем. сб., 213:12 (2022), 86–108; Yu. G. Prokhorov, С. A. Shramov, “Finite groups of bimeromorphic self-maps of nonuniruled Kähler threefolds”, Sb. Math., 213:12 (2022), 1695–1714
Sheng Meng, Fabio Perroni, De‐Qi Zhang, “Jordan property for automorphism groups of compact spaces in Fujiki's class C $\mathcal {C}$”, Journal of Topology, 15:2 (2022), 806
M. Sedano-Mendoza, “Isometry groups of generalized stiefel manifolds”, Transformation Groups, 27:4 (2022), 1533
Jin Hong Kim, “Strongly Jordan property and free actions of non-abelian free groups”, Proceedings of the Edinburgh Mathematical Society, 65:3 (2022), 736
Bandman T., Zarhin Yu.G., “Bimeromorphic Automorphism Groups of Certain P-1-Bundles”, Eur. J. Math., 7:2 (2021), 641–670
Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Notices, 2021:14 (2021), 10490–10520
Mundet i Riera I., “Isometry Groups of Closed Lorentz 4-Manifolds Are Jordan”, Geod. Dedic., 207:1 (2020), 201–207
S. Kebekus, “Boundedness results for singular fano varieties, and applications to cremona groups [following birkar and prokhorov-shramov]”, Asterisque, 2020, no. 422, 253–290
Ю. Г. Зархин, “Комплексные торы, тета-группы и их свойства Жордана”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 32–62; Yuri G. Zarhin, “Complex Tori, Theta Groups and Their Jordan Properties”, Proc. Steklov Inst. Math., 307 (2019), 22–50
Mundet i Riera I., “Finite group actions on homology spheres and manifolds with nonzero Euler characteristic”, J. Topol., 12:3 (2019), 744–758