Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)
Communications
The N···H hydrogen bond strength in the transition state at the limiting step determines the reactivity of cephalosporins in the active site of L1 metallo-β-lactamase
Аннотация:
The combined quantum mechanics/molecular mechanics investigation followed by the detailed electron density analysis for 9 cephalosporin–L1 metallo-β-lactamase complexes revealed correlation between the N···H hydrogen bond strength in the transition state at the limiting step and the reactivity of cephalosporin compounds. The stronger interactions were typical of the less reactive species.
Образец цитирования:
M. G. Khrenova, V. G. Tsirelson, “The N···H hydrogen bond strength in the transition state at the limiting step determines the reactivity of cephalosporins in the active site of L1 metallo-β-lactamase”, Mendeleev Commun., 29:5 (2019), 492–494
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mendc1567
https://www.mathnet.ru/rus/mendc/v29/i5/p492
Эта публикация цитируется в следующих 13 статьяx:
Sergey V. Kartashov, Anton P. Fedonin, Robert R. Fayzullin, “Electronic Force Density Fields: Insights into Partial Bonds, Transition States, and Chemical Structure Evolution”, J. Phys. Chem. A, 128:35 (2024), 7471
Elena O. Levina, Maria G. Khrenova, “Metallo-β-Lactamases: Influence of the Active Site Structure on the Mechanisms of Antibiotic Resistance and Inhibition”, Biochemistry Moscow, 86:S1 (2021), S24
Maria G. Khrenova, Elena O. Levina, Vladimir G. Tsirelson, “Benchmark studies of hydrogen bond governing reactivity of cephalosporins inL1metallo‐β‐lactamase: Efficient and reliableQSPRequations”, Int J of Quantum Chemistry, 121:4 (2021)
Alexandra V. Krivitskaya, Maria G. Khrenova, “Boronic Acids as Prospective Inhibitors of Metallo-β-Lactamases: Efficient Chemical Reaction in the Enzymatic Active Site Revealed by Molecular Modeling”, Molecules, 26:7 (2021), 2026
A. M. Kulakova, M. G. Khrenova, “Relationship Between Matrix Metalloproteinase-2 Inhibition Constants With APP-IP Oligopeptide and Its Mutant Forms and Electronic Binding Descriptors”, Russ. J. Phys. Chem. B, 15:3 (2021), 394
Maria G. Khrenova, Anastasia Yu. Soloveva, Larisa A. Varfolomeeva, Tamara V. Tikhonova, Vladimir O. Popov, “The O to S substitution in urea brings inhibition activity against thiocyanate dehydrogenase”, Mendeleev Communications, 31:3 (2021), 373
И. Ю. Титов, В. С. Стройлов, П. В. Русина, И. В. Свитанько, “Предварительное моделирование как первая стадия направленного органического синтеза”, Усп. хим., 90:7 (2021), 831–867; I. Yu. Titov, V. S. Stroylov, P. V. Rusina, I. Svitanko, “Preliminary modelling as the first stage of targeted organic synthesis”, Russian Chem. Reviews, 90:7 (2021), 831–867
Elena O. Levina, Maria G. Khrenova, Andrey A. Astakhov, Vladimir G. Tsirelson, “Revealing electronic features governing hydrolysis of cephalosporins in the active site of the L1 metallo-β-lactamase”, RSC Adv., 10:15 (2020), 8664
E. O. Levina, M. G. Khrenova, V. G. Tsirelson, “Effect of Substituents in Hydrolyzed Cephalosporins on Intramolecular O–H···N Bond”, Russ. J. Phys. Chem., 94:5 (2020), 925
Ф. Н. Новиков, В. С. Стройлов, И. В. Свитанько, В. Е. Небольсин, “Молекулярные основы патогенеза COVID-19”, Усп. хим., 89:8 (2020), 858–878; F. N. Novikov, V. S. Stroylov, I. Svitanko, V. E. Nebolsin, “Molecular foundations of COVID-19 pathogenesis”, Russian Chem. Reviews, 89:8 (2020), 858–878
V. S. Stroylov, I. Svitanko, “Computational identification of disulfiram and neratinib as putative SARS-CoV-2 main protease inhibitors”, Mendeleev Commun., 30:4 (2020), 419–420
N. K. Selezneva, A. M. Galeeva, L. M. Khalilov, Z. R. Valiullina, M. S. Miftakhov, “Base-determinant chemodivergent transformations of chiral 2,3-dibromopropanamide derivative”, Mendeleev Commun., 30:3 (2020), 313–314
M. G. Khrenova, A. V. Nemukhin, V. G. Tsirelson, “Discrimination of enzyme–substrate complexes by reactivity using the electron density analysis: peptide bond hydrolysis by the matrix metalloproteinase-2”, Mendeleev Commun., 30:5 (2020), 583–585