Аннотация:
We study SU(3)SU(3)-invariant integrable models solvable by nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of a bilinear combination of their highest coefficients. We obtain various different representations for the highest coefficient in terms of sums over partitions. We also obtain multiple integral representations for the highest coefficient.
The work of S P was supported in part by RFBR grant 11-01-00980-a, a grant of the Scientific Foundation of NRU HSE 12-09-0064 and a grant of FAST RF 14.740.11.0347. E R was supported by ANR Project DIADEMS (Programme Blanc ANR SIMI1 2010-BLAN-0120-02). N A S was supported by the Program of RAS Basic Problems of the Nonlinear Dynamics, RFBR-11-01-00440, RFBR-11-01-12037-ofi-m, SS-4612.2012.1.
Поступила в редакцию: 05.07.2012 Принята в печать: 12.08.2012
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jsm6
Эта публикация цитируется в следующих 17 статьяx:
Samuel Belliard, Rodrigo Alves Pimenta, Nikita A. Slavnov, “Modified rational six vertex model on the rectangular lattice”, SciPost Phys., 16:1 (2024), 9–20
Giuliano Niccoli, Hao Pei, Véronique Terras, “Correlation functions by separation of variables: the XXX spin chain”, SciPost Phys., 10:1 (2021)
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “Separation of variables bases for integrable glM|NglM|N and Hubbard models”, SciPost Phys., 9:4 (2020)
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “On scalar products in higher rank quantum separation of variables”, SciPost Phys., 9:6 (2020)
Jean Michel Maillet, Giuliano Niccoli, “Complete spectrum of quantum integrable lattice models associated to Y(gl(n)) by separation of variables”, SciPost Phys., 6:6 (2019)
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on Uq(^gln)”, SciPost Phys., 4 (2018), 6–30
Nikolay Gromov, Fedor Levkovich-Maslyuk, Grigory Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energ. Phys., 2017:9 (2017)
A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with gl(2|1) symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005–28
С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Детерминантные представления для формфакторов в квантовых интегрируемых моделях с GL(3)-инвариантной R-матрицей”, ТМФ, 181:3 (2014), 515–537; S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the GL(3)-invariant R-matrix”, Theoret. and Math. Phys., 181:3 (2014), 1566–1584
M. Wheeler, “Scalar Products in Generalized Models with SU(3)-Symmetry”, Commun. Math. Phys., 327:3 (2014), 737
С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Скалярные произведения в моделях с GL(3) тригонометрической R-матрицей. Старший коэффициент”, ТМФ, 178:3 (2014), 363–389; S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a GL(3) trigonometric R-matrix: Highest coefficient”, Theoret. and Math. Phys., 178:3 (2014), 314–335
W. Galleas, “Scalar Product of Bethe Vectors from Functional Equations”, Commun. Math. Phys., 329:1 (2014), 141
M. Wheeler, “Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in -invariant models”, Nuclear Physics B, 875:1 (2013), 186
O. Foda, M. Wheeler, “Colour-independent partition functions in coloured vertex models”, Nuclear Physics B, 871:2 (2013), 330
O. Foda, M. Wheeler, “Variations on Slavnov's scalar product”, J. High Energ. Phys., 2012:10 (2012)