Аннотация:
В работе исследуются новые модели о равновесии пластин с условиями непроникания типа Синьорини. Предполагается, что под действием специальных нагрузок пластины имеют деформации с определенной заранее известной конфигурацией кромок. Для этого частного случая мы рассматриваем новые условия непроникания, которые позволяют нам более точно описать контактное взаимодействие на кромках. С помощью метода фиктивных областей доказано, что исходную контактную задачу можно получить с помощью предельного перехода по параметру жесткости в семействе вспомогательных задач, сформулированных в более широкой области. Задачи семейства моделируют равновесие пластины с трещиной и зависят от положительного параметра жесткости. При этом на внутренней границе, соответствующей трещине, налагаются условия непроникания противоположных берегов трещины в виде неравенств. Для задачи о пластине с трещиной, выходящей под нулевым углом на внешнюю границу (случай границы с одним каспом), доказана ее однозначная разрешимость.
Ключевые слова:
краевые условия Синьорини, фиктивная область, условия непроникания, пластина Кирхгофа–Лява, трещина.
Образец цитирования:
Nyurgun P. Lazarev, Vladimir V. Everstov, Natalya A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, Журн. СФУ. Сер. Матем. и физ., 12:6 (2019), 674–686
\RBibitem{LazEveRom19}
\by Nyurgun~P.~Lazarev, Vladimir~V.~Everstov, Natalya~A.~Romanova
\paper Fictitious domain method for equilibrium problems of the Kirchhoff--Love plates with nonpenetration conditions for known configurations of plate edges
\jour Журн. СФУ. Сер. Матем. и физ.
\yr 2019
\vol 12
\issue 6
\pages 674--686
\mathnet{http://mi.mathnet.ru/jsfu805}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-6-674-686}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501590600003}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jsfu805
https://www.mathnet.ru/rus/jsfu/v12/i6/p674
Эта публикация цитируется в следующих 10 статьяx:
Н. П. Лазарев, Д. Я. Никифоров, Н. А. Романова, “Задача о равновесии для пластины Тимошенко, контактирующей боковой поверхностью по полосе заданной ширины”, Челяб. физ.-матем. журн., 9:4 (2024), 596–608
N. P. Lazarev, G. M. Semenova, E. D. Fedotov, “Optimal Control of the Obstacle Inclination Angle in the Contact Problem for a Kirchhoff–Love Plate”, Lobachevskii J Math, 45:11 (2024), 5383
Н. П. Лазарев, Д. Я. Никифоров, Н. А. Романова, “Задача о равновесии для пластины Тимошенко, контактирующей боковой и лицевой поверхностями”, Челяб. физ.-матем. журн., 8:4 (2023), 528–541
N. P. Lazarev, E. F. Sharin, E. S. Efimova, “Equilibrium Problem for an Inhomogeneous Kirchhoff–Love Plate Contacting with a Partially Delaminated Inclusion”, Lobachevskii J Math, 44:10 (2023), 4127
Н. П. Лазарев, Е. Д. Федотов, “Трёхмерная задача типа Синьорини для композитных тел, контактирующих острыми гранями жёстких включений”, Челяб. физ.-матем. журн., 7:4 (2022), 412–423
Nyurgun Lazarev, Galina Semenova, “Optimal control of loads for an equilibrium problem describing a point contact of an elastic body with a sharp-shaped stiffener”, Z. Angew. Math. Phys., 73:5 (2022)
Nyurgun P. Lazarev, Victor A. Kovtunenko, “Signorini-Type Problems over Non-Convex Sets for Composite Bodies Contacting by Sharp Edges of Rigid Inclusions”, Mathematics, 10:2 (2022), 250
Nyurgun P. Lazarev, “Equilibrium problem for a thermoelastic Kirchhoff–Love plate with a delaminated flat rigid inclusion”, Phil. Trans. R. Soc. A., 380:2236 (2022)
Nyurgun P. Lazarev, Galina M. Semenova, Natalya A. Romanova, “On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack”, Журн. СФУ. Сер. Матем. и физ., 14:1 (2021), 28–41
N. P. Lazarev, “Equilibrium problem for an thermoelastic Kirchhoff–Love plate with a nonpenetration condition for known configurations of crack edges”, Сиб. электрон. матем. изв., 17 (2020), 2096–2104