Аннотация:
We prove that there exists an absolute constant c>0 such that if an arithmetic progression
P
modulo a prime number p does not contain zero and has the cardinality less than cp, then it cannot be represented as a product of two subsets of cardinality greater than 1, unless P=−P or
P={−2r,r,4r} for some residue r modulo p.
The first author was supported by the sabbatical grant from PASPA-DGAPA-UNAM. The second author was supported by Russian Foundation for Basic Research, Grant No. 14-01-00332, and Program Supporting Leading Scientific Schools, Grant Nsh-3082.2014.1.
Поступила в редакцию: 26.09.2013 Исправленный вариант: 23.05.2014 Принята в печать: 09.06.2014
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jnt3
Эта публикация цитируется в следующих 1 статьяx:
I. D. Shkredov, “Any small multiplicative sugroup is not a sumset”, Finite Fields Appl., 63 (2020), 101645–15