Аннотация:
In this paper we propose a new solution of the electrohydrodynamic equations describing a novel cone-jet flow structure formed at a conductive liquid meniscus in an electric field. Focusing on the liquids characterized by a high relative dielectric permittivity and using the slender body approximation, the cone-jet transition profiles and their characteristic radii are predicted in relation to the material parameters. The stable value of the cone angle is obtained using the Onsager's principle of maximum entropy production. Three different regimes of the cone-jet flow behavior are identified depending on the relative importance of capillary, viscous and inertial stress contributions. The presented complete analytical solutions for the cone-jet transition zone and the far jet region yield several different laws of algebraic decrease for the radius, surface charge and electric field of the jet.
Образец цитирования:
A. V. Subbotin, A. N. Semenov, “Electrohydrodynamics of cone-jet flow at high relative dielectric permittivity”, Письма в ЖЭТФ, 102:12 (2015), 932–937; JETP Letters, 102:12 (2015), 815–820
\RBibitem{SubSem15}
\by A.~V.~Subbotin, A.~N.~Semenov
\paper Electrohydrodynamics of cone-jet flow at high relative dielectric permittivity
\jour Письма в ЖЭТФ
\yr 2015
\vol 102
\issue 12
\pages 932--937
\mathnet{http://mi.mathnet.ru/jetpl4819}
\crossref{https://doi.org/10.7868/S0370274X15240078}
\elib{https://elibrary.ru/item.asp?id=25373119}
\transl
\jour JETP Letters
\yr 2015
\vol 102
\issue 12
\pages 815--820
\crossref{https://doi.org/10.1134/S0021364015240121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371275600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959323412}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl4819
https://www.mathnet.ru/rus/jetpl/v102/i12/p932
Эта публикация цитируется в следующих 9 статьяx:
Andrey V. Subbotin, Alexander Ya. Malkin, Valery G. Kulichikhin, Polymers, 15:4 (2023), 1051
Dongwoon Shin, Jonghyun Kim, Jiyoung Chang, Journal of Manufacturing Processes, 90 (2023), 226
Shiqi Yang, Zhentao Wang, Qian Kong, Bin Li, Junfeng Wang, Chinese Journal of Chemical Engineering, 44 (2022), 456
Subbotin V A., Polym. Sci. Ser. A, 63:2 (2021), 172–179
A. Subbotin, V. Kulichikhin, Materials, 13:19 (2020), 4295
S. Choi, D. Shin, J. Chang, ACS Appl. Polym. Mater., 2:7 (2020), 2761–2768
A. V. Subbotin, A. N. Semenov, Phys. Fluids, 30:2 (2018), 022108
A. V. Subbotin, A. N. Semenov, Письма в ЖЭТФ, 107:3 (2018), 191–192; JETP Letters, 107:3 (2018), 186–191
A. Ya. Malkin, A. V. Semakov, I. Yu. Skvortsov, P. Zatonskikh, V. G. Kulichikhin, A. V. Subbotin, A. N. Semenov, Macromolecules, 50:20 (2017), 8231–8244