|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Физика
Многофункциональные подстановки и солитонные решения интегрируемых нелинейных уравнений
В. М. Журавлев Ульяновский государственный университет, Ульяновск
Аннотация:
Актуальность и цели. В работе строится многофункциональное расширение метода функциональных подстановок для нелинейных уравнений в частных производных. Целью работы является доказательство связи между методом обратной задачи (МОЗ) и методом функциональных подстановок, которые играют важную роль в современной теории нелинейных волновых процессов в различных типах физических систем. Такая связь дает возможность создать эффективный способ вычисления решений уравнений математической физики, интегрируемых с помощью метода обратной задачи. Материалы и методы. Основным методом, который используется в работе, является метод функциональных подстановок в скалярной и матричной формах. Для установления связи новой формы решений уравнений типа Кортевега - де Вриза и нелинейного уравнения Шредингера используется метод преобразований Дарбу, играющий важную роль в МОЗ. Результаты. Развит способ расширения метода функциональных подстановок в скалярной и матричной формах, позволяющий получить новые интегрируемые модели теоретической и математической физики вместе с их решениями. Для интегрируемых с помощью МОЗ уравнений на примере уравнений Кортевега - де-Вриза и нелинейного уравнения Шредингера построен новый эффективный способ построения точных решений, эквивалентных новому типу многофункциональных подстановок. Выводы. Развитый подход дает новый способ построения интегрируемых моделей теоретической и математической физики вместе с их точными решениями.
Ключевые слова:
метод функциональных подстановок, метод обратной задачи, многосолитонные решения, преобразования Дарбу, уравнение Кортевега - де-Вриза.
Образец цитирования:
В. М. Журавлев, “Многофункциональные подстановки и солитонные решения интегрируемых нелинейных уравнений”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2019, № 3, 93–119
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ivpnz112 https://www.mathnet.ru/rus/ivpnz/y2019/i3/p93
|
Статистика просмотров: |
Страница аннотации: | 100 | PDF полного текста: | 42 | Список литературы: | 36 |
|