Аннотация:
In 1987 Brehm and Kühnel showed that any combinatorial d-manifold with less than 3d/2+3 vertices is PL homeomorphic to the sphere and any combinatorial d-manifold with exactly 3d/2+3 vertices is PL homeomorphic to either the sphere or a manifold like a projective plane in the sense of Eells and Kuiper. The latter possibility may occur for d∈{2,4,8,16} only. There exist a unique 6-vertex triangulation of RP2, a unique 9-vertex triangulation of CP2, and at least three 15-vertex triangulations of HP2. However, until now, the question of whether there exists a 27-vertex triangulation of a manifold like the octonionic projective plane has remained open. We solve this problem by constructing a lot of examples of such triangulations. Namely, we construct 634 vertex-transitive 27-vertex combinatorial 16-manifolds like the octonionic projective plane. Four of them have symmetry group C33⋊C13 of order 351, and the other 630 have symmetry group C33 of order 27. Further, we construct more than 10103 non-vertex-transitive 27-vertex combinatorial 16-manifolds like the octonionic projective plane. Most of them have trivial symmetry group, but there are also symmetry groups C3, C23, and C13. We conjecture that all the triangulations constructed are PL homeomorphic to the octonionic projective plane OP2. Nevertheless, we have no proof of this fact so far.
Bibliography: 52 titles.
Ключевые слова:
minimal triangulation, octonionic projective plane, manifold like a projective plane, Kühnel triangulation, Brehm–Kühnel triangulations, vertex-transitive triangulation, combinatorial manifold.
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-265).
Образец цитирования:
A. A. Gaifullin, “634 vertex-transitive and more than 10103 non-vertex-transitive 27-vertex triangulations of manifolds like the octonionic projective plane”, Изв. РАН. Сер. матем., 88:3 (2024), 12–60; Izv. Math., 88:3 (2024), 419–467
А. А. Гайфуллин, “О возможных группах симметрий 27-вершинных триангуляций многообразий, похожих на октавную проективную плоскость”, Матем. сб., 215:7 (2024), 3–51; A. A. Gaifullin, “On possible symmetry groups of 27-vertex triangulations of manifolds like the octonionic projective plane”, Sb. Math., 215:7 (2024), 869–910
А. А. Гайфуллин, “Новые примеры и частичная классификация 15-вершинных триангуляций кватернионной проективной плоскости”, Топология, геометрия, комбинаторика и математическая физика, Сборник статей. К 80-летию члена-корреспондента РАН Виктора Матвеевича Бухштабера, Труды МИАН, 326, МИАН, М., 2024, 58–100; Alexander A. Gaifullin, “New Examples and Partial Classification of 15-Vertex Triangulations of the Quaternionic Projective Plane”, Proc. Steklov Inst. Math., 326 (2024), 52–89