Аннотация:
The main result of the paper is that if A is an abelian variety over a subfield F of C, and A has purely multiplicative reduction at a discrete valuation of F, then the Hodge group of A is semisimple. Further, we give necessary and sufficient conditions for the Hodge group to be semisimple. We obtain bounds on certain torsion
subgroups for abelian varieties which do not have purely multiplicative reduction at a given discrete valuation, and therefore obtain bounds on torsion for abelian varieties, defined over number fields, whose Hodge groups are not semisimple.
Bibliography: 26 titles.
Образец цитирования:
A. Silverberg, Yu. G. Zarhin, “Hodge groups of abelian varieties with purely multiplicative reduction”, Изв. РАН. Сер. матем., 60:2 (1996), 149–158; Izv. Math., 60:2 (1996), 379–389
Orr M., “Lower Bounds For Ranks of Mumford-Tate Groups”, Bull. Soc. Math. Fr., 143:2 (2015), 229–246
С. Г. Танкеев, “О численной эквивалентности алгебраических циклов на потенциально простых
абелевых схемах простой относительной размерности”, Изв. РАН. Сер. матем., 69:1 (2005), 145–164; S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162
Zarhin Y.G., “Torsion of abelian varieties, Weil classes and cyclotomic extensions”, Mathematical Proceedings of the Cambridge Philosophical Society, 126:Part 1 (1999), 1–15