Аннотация:
В терминах характеристической функции для абстрактного диссипативного оператора получены условия отделимости инвариантных подпространств, отвечающих абсолютно непрерывному, дискретному и сингулярному спектру. На примере обыкновенного дифференциального оператора с вещественным потенциалом и комплексным граничным условием продемонстрировано применение полученных теорем.
Библиография: 20 названий.
Образец цитирования:
Б. С. Павлов, “Об условиях отделимости спектральных компонент диссипативного оператора”, Изв. АН СССР. Сер. матем., 39:1 (1975), 123–148; Math. USSR-Izv., 9:1 (1975), 113–137
Kirill D. Cherednichenko, Yulia Yu. Ershova, Sergey N. Naboko, “Functional model for generalised resolvents and its application to time-dispersive media”, Anal.Math.Phys., 14:6 (2024)
M. Brown, M. Marletta, S. N. Naboko, I. Wood, “The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach”, Алгебра и анализ, 35:1 (2023), 33–79; St. Petersburg Math. J., 35:1 (2024), 25–59
C. Fischbacher, S. N. Naboko, I. Wood, “Complete nonselfadjointness for Schrödinger operators on the semi-axis”, Алгебра и анализ, 35:1 (2023), 283–303; St. Petersburg Math. J., 35:1 (2024), 217–232
Kirill D. Cherednichenko, Yulia Yu. Ershova, Alexander V. Kiselev, Vladimir A. Ryzhov, Luis O. Silva, Operator Theory: Advances and Applications, 291, From Complex Analysis to Operator Theory: A Panorama, 2023, 239
Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva, “FUNCTIONAL MODEL FOR BOUNDARY‐VALUE PROBLEMS”, Mathematika, 67:3 (2021), 596
Şeyhmus Yardimci, Esra Kir Arpat, Çağla Can, “On the structure of discrete spectrum of a non-selfadjoint system of differential equations with integral boundary condition”, J Math Chem, 55:5 (2017), 1202
Nihal Yokus, Turhan Koprubasi, “Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter”, J Inequal Appl, 2015:1 (2015)
Esra Kir Arpat, “An eigenfunction expansion of the non-selfadjoint Sturm–Liouville operator with a singular potential”, J Math Chem, 2013
Romanov R., “Estimates of Solutions of Linear Neutron Transport Equation at Large Time and Spectral Singularities”, Kinet. Relat. Mod., 5:1 (2012), 113–128
Tikhonov A., “Inner-Outer Factorization for Weighted Schur Class Functions and Corresponding Invariant Subspaces”, Spectral Theory and Analysis, Operator Theory Advances and Applications, 214, eds. Janas J., Kurasov P., Laptev A., Naboko S., Stolz G., Birkhauser Verlag Ag, 2011, 125–134
Elgiz Bairamov, M. Seyyit Seyyidoglu, “Non-Self-Adjoint Singular Sturm-Liouville Problems with Boundary Conditions Dependent on the Eigenparameter”, Abstract and Applied Analysis, 2010 (2010), 1
Kiselev A.V., Naboko S., “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Cayley Identity and Some Questions of Spectral Structure”, Ark. Mat., 47:1 (2009), 91–125
Cheremnikh E.V., “Wave Operators for Nonlocal Sturm-Liouville Operators with Trivial Potential”, Methods of Spectral Analysis in Mathematical Physics, Operator Theory Advances and Applications, 186, eds. Janas J., Kurasov P., Laptev A., Naboko S., Stolz G., Birkhauser Verlag Ag, 2009, 49–68
Kiselev A.V., “Similarity Problem for Non-Self-Adjoint Extensions of Symmetric Operators”, Methods of Spectral Analysis in Mathematical Physics, Operator Theory Advances and Applications, 186, eds. Janas J., Kurasov P., Laptev A., Naboko S., Stolz G., Birkhauser Verlag Ag, 2009, 267–283
Kiselev A.V., “Functional Model for Singular Perturbations of Non-Self-Adjoint Operators”, Operator Theory, Analysis and Mathematical Physics, Operator Theory : Advances and Applications, 174, eds. Janas J., Kurasov P., Laptev A., Naboko S., Stolz G., Birkhauser Verlag Ag, 2007, 51–67
Ryzhov V., “Functional Model of a Class of Non-Selfadjoint Extensions of Symmetric Operators”, Operator Theory, Analysis and Mathematical Physics, Operator Theory : Advances and Applications, 174, ed. Janas J. Kurasov P. Laptev A. Naboko S. Stolz G., Birkhauser Verlag Ag, 2007, 117–158
Kiselev A., Naboko S., “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Matrix Model. I”, J. Comput. Appl. Math., 194:1 (2006), 115–130
А. В. Киселев, С. Н. Набоко, “Несамосопряженные операторы с почти эрмитовым спектром: слабые аннуляторы”, Функц. анализ и его прил., 38:3 (2004), 39–51; A. V. Kiselev, S. N. Naboko, “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators”, Funct. Anal. Appl., 38:3 (2004), 192–201
Ball J., Sadosky C., Vinnikov V., “Conservative Linear Systems, Unitary Colligations and Lax-Phillips Scattering: Multidimensional Generalizations”, Int. J. Control, 77:9 (2004), 802–811
Pavlov B., “A Remark on Spectral Meaning of the Symmetric Functional Model”, Spectral Methods for Operators of Mathematical Physics, Operator Theory : Advances and Applications, 154, eds. Janas J., Kurasov P., Naboko S., Birkhauser Verlag Ag, 2004, 163–177