Аннотация:
Рассматривается задача Дирихле E(uxixj,uxi,u,x)=0 в Ω⊂Rd, u=φ на ∂Ω, для нелинейных эллиптических уравнений, охватывающих уравнения Беллмана с “коэффициентами” из пространства Гёльдера Cα(¯¯¯¯Ω). Доказывается, что если α>0 достаточно мало, то эта задача разрешима в C2+αloc(Ω)∩C(¯¯¯¯Ω). Если, кроме того, ∂Ω∈C2+α и φ∈C2+α(¯¯¯¯Ω), то решение принадлежит C2+α(¯¯¯¯Ω).
Библиография: 18 названий.
Образец цитирования:
М. В. Сафонов, “О классическом решении нелинейных эллиптических уравнений второго порядка”, Изв. АН СССР. Сер. матем., 52:6 (1988), 1272–1287; Math. USSR-Izv., 33:3 (1989), 597–612
\RBibitem{Saf88}
\by М.~В.~Сафонов
\paper О~классическом решении нелинейных эллиптических уравнений второго порядка
\jour Изв. АН СССР. Сер. матем.
\yr 1988
\vol 52
\issue 6
\pages 1272--1287
\mathnet{http://mi.mathnet.ru/im1230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=984219}
\zmath{https://zbmath.org/?q=an:0682.35048}
\transl
\jour Math. USSR-Izv.
\yr 1989
\vol 33
\issue 3
\pages 597--612
\crossref{https://doi.org/10.1070/IM1989v033n03ABEH000858}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/im1230
https://www.mathnet.ru/rus/im/v52/i6/p1272
Эта публикация цитируется в следующих 21 статьяx:
Dietmar Gallistl, Ngoc Tien Tran, “Convergence of a regularized finite element discretization of the two-dimensional Monge–Ampère equation”, Math. Comp., 92:342 (2023), 1467
Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang, “Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions”, Probab Uncertain Quant Risk, 5:1 (2020)
Nicolai V. Krylov, “Linear and fully nonlinear elliptic equations with Ld-drift”, Communications in Partial Differential Equations, 45:12 (2020), 1778
N. V. Krylov, “C
1+α-Regularity of Viscosity Solutions of General Nonlinear Parabolic Equations”, J Math Sci, 232:4 (2018), 403
Xiuxiong Chen, Yuanqi Wang, “C2,α C 2 , α -estimate for Monge-Ampère equations with Hölder-continuous right hand side”, Ann Glob Anal Geom, 49:2 (2016), 195
Bruno Strulovici, Martin Szydlowski, “On the smoothness of value functions and the existence of optimal strategies in diffusion models”, Journal of Economic Theory, 2015
N. V. Krylov, “On C 1+α regularity of solutions of Isaacs parabolic equations with VMO coefficients”, Nonlinear Differ. Equ. Appl, 2013
Claudio Marchi, “Continuous dependence estimates for the ergodic problem of Bellman equation with an application to the rate of convergence for the homogenization problem”, Calc. Var, 2013
Bruno H. Strulovici, Martin Szydlowski, “On the Smoothness of Value Functions”, SSRN Journal, 2012
Claudio Marchi, Fabio Camilli, “On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems”, NHM, 6:1 (2011), 61
Fabio Camilli, Annalisa Cesaroni, Claudio Marchi, “Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations: Rate of Convergence Estimates”, Advanced Nonlinear Studies, 11:2 (2011), 405
Fabio Camilli, Claudio Marchi, “Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs”, Nonlinearity, 22:6 (2009), 1481
Jiakun Liu, Neil S. Trudinger, Xu-Jia Wang, “InteriorC2,αRegularity for Potential Functions in Optimal Transportation”, Communications in Partial Differential Equations, 35:1 (2009), 165
Orazio Arena, Pasquale Buonocore, “On a variational problem for radial solutions to extremal elliptic equations”, Annali di Matematica, 2008
O ALVAREZ, M BARDI, C MARCHI, “Multiscale problems and homogenization for second-order Hamilton–Jacobi equations”, Journal of Differential Equations, 243:2 (2007), 349
Neil Trudinger, Xu-Jia Wang, “The affine Plateau problem”, J. Amer. Math. Soc., 18:2 (2005), 253
Luis A. Caffarelli, Qingbo Huang, “Estimates in the generalized Campanato-John-Nirenberg spaces for fully nonlinear elliptic equations”, Duke Math. J., 118:1 (2003)
M. G Crandall, M Kocan, A. Świech, “Lp- Theory for fully nonlinear uniformly parabolic equations”, Communications in Partial Differential Equations, 25:11-12 (2000), 1997
P. Daskalopoulos, R. Hamilton, “Regularity of the free boundary for the porous medium equation”, J. Amer. Math. Soc., 11:4 (1998), 899
Kovats Jay, “Fully nonlinear elliptic equations and the dini condition”, Communications in Partial Differential Equations, 22:11-12 (1997), 1911