Образец цитирования:
М. М. Маламуд, “О теоремах типа Борга для систем первого порядка на конечном интервале”, Функц. анализ и его прил., 33:1 (1999), 75–80; Funct. Anal. Appl., 33:1 (1999), 64–68
\RBibitem{Mal99}
\by М.~М.~Маламуд
\paper О теоремах типа Борга для систем первого порядка на конечном интервале
\jour Функц. анализ и его прил.
\yr 1999
\vol 33
\issue 1
\pages 75--80
\mathnet{http://mi.mathnet.ru/faa343}
\crossref{https://doi.org/10.4213/faa343}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1711902}
\zmath{https://zbmath.org/?q=an:0942.34078}
\transl
\jour Funct. Anal. Appl.
\yr 1999
\vol 33
\issue 1
\pages 64--68
\crossref{https://doi.org/10.1007/BF02465147}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081874700010}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/faa343
https://doi.org/10.4213/faa343
https://www.mathnet.ru/rus/faa/v33/i1/p75
Эта публикация цитируется в следующих 17 статьяx:
Tiezheng Li, Guangsheng Wei, “The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials”, Ann. Funct. Anal., 15:2 (2024)
Alexander Makin, “On the spectrum of non-self-adjoint Dirac operators with quasi-periodic boundary conditions”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:4 (2023), 1099
Guangsheng Wei, Zhongfang Zhang, “The local Borg–Marchenko uniqueness theorem of matrix‐valued Dirac‐type operators for coefficients locally smooth at the right endpoint”, Mathematische Nachrichten, 296:8 (2023), 3711
Ismailov M.I. Yilmaz B., “Inverse Scattering on the Half-Line For Generalized Zs-Akns System With General Boundary Conditions”, J. Nonlinear Math. Phys., 26:1 (2019), 155–167
М. М. Маламуд, “Об однозначном определении системы по части матрицы монодромии”, Функц. анализ и его прил., 49:4 (2015), 33–49; M. M. Malamud, “Unique Determination of a System by a Part of the Monodromy Matrix”, Funct. Anal. Appl., 49:4 (2015), 264–278
Brunnhuber R., Eckhardt J., Kostenko A., Teschl G., “Singular Weyl-Titchmarsh-Kodaira Theory For One-Dimensional Dirac Operators”, Mon.heft. Math., 174:4 (2014), 515–547
Puyda D.V., “Inverse Spectral Problems for Dirac Operators with Summable Matrix-Valued Potentials”, Integr. Equ. Oper. Theory, 74:3 (2012), 417–450
Zinchenko M., “Trace formulas and a Borg-type theorem for CMV operators with matrix-valued coefficients”, Mathematische Nachrichten, 283:2 (2010), 312–329
Arutyunyan T.N., “Transformation Operators for the Canonical Dirac System”, Differential Equations, 44:8 (2008), 1041–1052
Gesztesy F., “Inverse spectral theory as influenced by Barry Simon”, Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon'S 60th Birthday - Ergodic Schrodinger Operators, Singular Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory, Proceedings of Symposia in Pure Mathematics, 76, no. 2, 2007, 741–820
Gesztesy, F, “A Borg-type theorem associated with orthogonal polynomials on the unit circle”, Journal of the London Mathematical Society-Second Series, 74 (2006), 757
Albeverio, S, “Inverse spectral problems for Dirac operators with summable potentials”, Russian Journal of Mathematical Physics, 12:4 (2005), 406
Clark, S, “Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators”, Journal of Differential Equations, 219:1 (2005), 144
Malamud M.M., “Uniqueness of the matrix Sturm-Liouville equation given a part of the monodromy matrix, and Borg type results”, Sturm-Liouville Theory: Past and Present, 2005, 237–270
Kiss, M, “An n-dimensional Ambarzumian type theorem for Dirac operators”, Inverse Problems, 20:5 (2004), 1593
Gesztesy, F, “Uniqueness results for matrix-valued Schrodinger, Jacobi, and Dirac-type operators”, Mathematische Nachrichten, 239 (2002), 103
Clark, S, “Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators”, Transactions of the American Mathematical Society, 354:9 (2002), 3475