Аннотация:
We present some Caffarelli–Kohn–Nirenberg-type inequalities for Herz-type Besov–Triebel–Lizorkin spaces, Besov–Morrey and Triebel–Lizorkin–Morrey spaces. More precisely, we investigate
the inequalities
$$
||f||_{\dot{k}_{v,\sigma}^{\alpha_1,r}}\leqslant c||f||_{\dot{K}_{u}^{\alpha_2,\delta}}^{1-\theta}||f||_{\dot{K}_{p}^{\alpha_3,\delta_1}A_\beta^s}^\theta
$$
and
$$
||f||_{\mathcal{E}_{p,2,u}^\sigma}\leqslant c||f||_{M_\mu^\delta}^{1-\theta}||f||_{\mathcal{N}_{q,\beta,v}}^\theta,
$$
with some appropriate assumptions on the parameters, where $\dot{k}_{v,\sigma}^{\alpha_1,r}$ are the Herz-type Bessel potential
spaces, which are just the Sobolev spaces if $\alpha_1=0,1<r=v<\infty$ and $\sigma\in\mathbb{N}_0$, and $\dot{K}_p^{\alpha_3,\delta_1}A_\beta^s$
are Besov or Triebel–Lizorkin spaces if $\alpha_3=0$ and $\delta-1=p$. The usual Littlewood–Paley technique,
Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev
inequalities are given.
Ключевые слова и фразы:
Besov spaces, Triebel–Lizorkin spaces, Morrey spaces, Herz spaces, Caffarelli–Kohn–Nirenberg inequalities.
Финансовая поддержка
Номер гранта
General Direction of Higher Education and Training
C00L03UN280120220004
General Directorate of Scientific Research and Technological Development
This work is funded by the General Direction of Higher Education and Training under Grant No. C00L03UN280120220004 and by the General Directorate of Scientific Research and Technological Development, Algeria.
Поступила в редакцию: 09.05.2020 Исправленный вариант: 19.10.2022