Аннотация:
Our main results are certain developments of the classical Poisson–Jensen formula for subharmonic functions. The basis of the classical Poisson–Jensen formula is the natural duality between harmonic measures and Green's functions. Our generalizations use some duality between the balayage of measures and their potentials.
Ключевые слова и фразы:
subharmonic function, potential, Riesz measure, Green's function, harmonic measure, Poisson–Jensen formula, balayage of measures, Jensen measure.
The research was carried out with the financial support of the Russian Science Foundation, grant
No. 22-21-00026, https://rscf.ru/project/22-21-00026/.
\RBibitem{Kha21}
\by B.~N.~Khabibullin
\paper Poisson--Jensen formulas and balayage of measures
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 4
\pages 53--73
\mathnet{http://mi.mathnet.ru/emj422}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-4-53-73}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000737952800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123896892}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj422
https://www.mathnet.ru/rus/emj/v12/i4/p53
Эта публикация цитируется в следующих 2 статьяx:
B. N. Khabibullin, E. B. Menshikova, “Integral Formulas for Subharmonic and Meromorphic Functions and Completeness of Exponential Systems”, Lobachevskii J Math, 45:1 (2024), 434
B. N. Khabibullin, “Representations on an Open Set of Potentials that are Harmonic and Coincident Outside a Compact Subset”, Lobachevskii J Math, 44:4 (2023), 1350