Аннотация:
In a degenerate domain, namely, the inverted cone, we consider a boundary value problem of heat conduction. For this problem the solvability theorems are established in weighted spaces of essentially bounded functions. The proofs of the theorems are based on the results of the solvability for a nonhomogeneous integral equation of the third kind. The problem under study is reduced to the study of this integral equation using the representation of the solution to the boundary value problem in the form of a sum of constructed thermal potentials.
Ключевые слова и фразы:
fundamental solution, axial symmetry, modified Bessel function.
This work was supported by the Committee of Science of the Ministry of Education and Science of
the Republic of Kazakhstan (grants no. AP05132262 and AP05130928).
Образец цитирования:
M. T. Jenaliyev, M. I. Ramazanov, M. T. Kosmakova, Zh. M. Tuleutaeva, “On the solution to a two-dimensional heat conduction problem in a degenerate domain”, Eurasian Math. J., 11:3 (2020), 89–94
\RBibitem{DzhRamKos20}
\by M.~T.~Jenaliyev, M.~I.~Ramazanov, M.~T.~Kosmakova, Zh.~M.~Tuleutaeva
\paper On the solution to a two-dimensional heat conduction problem in a degenerate domain
\jour Eurasian Math. J.
\yr 2020
\vol 11
\issue 3
\pages 89--94
\mathnet{http://mi.mathnet.ru/emj377}
\crossref{https://doi.org/10.32523/2077-9879-2020-11-3-89-94}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610832700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097553095}