Аннотация:
In a Hilbert space we consider a minimal and complete system asymptotically close to an almost normed unconditional basis and find conditions under which such system also forms an unconditional basis. The proof of this statement is based on a new criterion of compactness of linear operators proposed in this paper.
Ключевые слова и фразы:
perturbation, compact operator, orthoprojector, isotropically non-compact sequence.
\RBibitem{Lar20}
\by E.~A.~Larionov
\paper On stability of bases in Hilbert spaces
\jour Eurasian Math. J.
\yr 2020
\vol 11
\issue 2
\pages 65--71
\mathnet{http://mi.mathnet.ru/emj366}
\crossref{https://doi.org/10.32523/2077-9879-2020-11-2-65-71}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556974900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088876841}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj366
https://www.mathnet.ru/rus/emj/v11/i2/p65
Эта публикация цитируется в следующих 1 статьяx:
Aleroev T., “Solving the Boundary Value Problems For Differential Equations With Fractional Derivatives By the Method of Separation of Variables”, Mathematics, 8:11 (2020), 1877