|
Eurasian Mathematical Journal, 2018, том 9, номер 2, страницы 11–21
(Mi emj293)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative
S. Yu. Artamonov Department of Applied Mathematics,
Moscow Institute of Electronics and Mathematics,
National Research University Higher School of Economics,
34 Tallinskaya St, 123458, Moscow, Russian Federation
Аннотация:
A new non-periodic modulus of smoothness related to the Riesz derivative is constructed. Its properties are studied in the spaces Lp(R) of non-periodic functions with 1⩽p⩽+∞. The direct Jackson type estimate is proved. It is shown that the introduced modulus is equivalent to the K-functional related to the Riesz derivative and to the approximation error of the convolution integrals generated by the Fejér kernel.
Ключевые слова и фразы:
modulus of smoothness, Riesz derivative, K-functional, Bernstein space.
Поступила в редакцию: 18.08.2016 Исправленный вариант: 30.05.2018
Образец цитирования:
S. Yu. Artamonov, “On some constructions of a non-periodic modulus of smoothness related to the Riesz derivative”, Eurasian Math. J., 9:2 (2018), 11–21
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj293 https://www.mathnet.ru/rus/emj/v9/i2/p11
|
Статистика просмотров: |
Страница аннотации: | 301 | PDF полного текста: | 122 | Список литературы: | 48 |
|