Аннотация:
Получено полное описание кубических многочленов $f$ над полями алгебраических чисел $\mathbb K$ степени 3 над $\mathbb Q$, для которых разложение $\sqrt f$ в непрерывную дробь в поле формальных степенных рядов $\mathbb K((x))$ периодично. Доказана теорема конечности для кубических многочленов $f\in K[x]$ с периодическим разложением $\sqrt f$ для расширений $\mathbb Q$ степени, не превосходящей 6, и дано полное описание таких многочленов $f$ над произвольным полем, соответствующих эллиптическим полям с точкой кручения порядка $N\ge30$.
Образец цитирования:
В. П. Платонов, М. М. Петрунин, “О конечности числа периодических разложений в непрерывную дробь $\sqrt f$ для кубических многочленов над полями алгебраических чисел”, Докл. РАН. Матем., информ., проц. упр., 495 (2020), 48–54; Dokl. Math., 102:3 (2020), 487–492