Аннотация:
We consider a game-theoretic model of negotiations of n persons about a meeting time. The problem is to determine the time of the meeting, with the consensus of all players required to make a final decision. The solution is found by backward induction in the class of stationary strategies. Players' wins are represented by piecewise linear functions having one peak. An subgame perfect equilibrium for the problem in the case of δ⩽12 is found in analytical form.
Образец цитирования:
Vladimir V. Yashin, “Solution of the meeting time choice problem for n persons”, Contributions to Game Theory and Management, 15 (2022), 303–310
\RBibitem{Yas22}
\by Vladimir~V.~Yashin
\paper Solution of the meeting time choice problem for $n$ persons
\jour Contributions to Game Theory and Management
\yr 2022
\vol 15
\pages 303--310
\mathnet{http://mi.mathnet.ru/cgtm431}
\crossref{https://doi.org/10.21638/11701/spbu31.2022.22}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4589473}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cgtm431
https://www.mathnet.ru/rus/cgtm/v15/p303
Эта публикация цитируется в следующих 1 статьяx:
Vladimir Mazalov, Vladimir Yashin, “A Multi-Step Model for Pie Cutting with Random Offers”, Mathematics, 12:8 (2024), 1150