|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2018, номер 1, страницы 92–119
(Mi basm469)
|
|
|
|
Distances on free semigroups and their applications
M. M. Chobana, I. A. Budanaevb a Tiraspol State University, Republic of Moldova, str. Iablochkin 5, Chisinau, Moldova
b Institute of Mathematics and Computer Sciences of ASM, str. Academiei, 3/2, MD-2028, Chisinau, Moldova
Аннотация:
In this article it is proved that for any quasimetric d on a set X with a base-point pX there exists a maximal invariant extension ˆρ on the free monoid Fa(X,V) in a non-Burnside quasi-variety V of topological monoids (Theorem 6.1). This fact permits to prove that for any non-Burnside quasi-variety V of topological monoids and any T0-space X the free topological monoid F(X,V) exists and is abstract free (Theorem 7.1). Corollary 10.2 affirms that F(X,V), where V is a non-trivial complete non-Burnside quasi-variety of topological monoids, is a topological digital space if and only if X is a topological digital space.
Ключевые слова и фразы:
quasi-variety of topological monoids, free monoid, invariant distance, quasimetric.
Поступила в редакцию: 11.03.2018
Образец цитирования:
M. M. Choban, I. A. Budanaev, “Distances on free semigroups and their applications”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 1, 92–119
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm469 https://www.mathnet.ru/rus/basm/y2018/i1/p92
|
Статистика просмотров: |
Страница аннотации: | 266 | PDF полного текста: | 88 | Список литературы: | 44 |
|