|
Algebra and Discrete Mathematics, 2017, том 23, выпуск 2, страницы 223–229
(Mi adm605)
|
|
|
|
RESEARCH ARTICLE
Finite groups admitting a dihedral group of automorphisms
Gülin Ercana, İsmail Ş. Güloğlub a Department of Mathematics, Middle East Technical University, Ankara, Turkey
b Department of Mathematics, Doğuş University, Istanbul, Turkey
Аннотация:
Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the subgroups CG(α) and CG(β).
Ключевые слова:
dihedral group, fixed points, nilpotent length.
Поступила в редакцию: 23.11.2016
Образец цитирования:
Gülin Ercan, İsmail Ş. Güloğlu, “Finite groups admitting a dihedral group of automorphisms”, Algebra Discrete Math., 23:2 (2017), 223–229
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm605 https://www.mathnet.ru/rus/adm/v23/i2/p223
|
Статистика просмотров: |
Страница аннотации: | 132 | PDF полного текста: | 69 | Список литературы: | 39 |
|