|
Algebra and Discrete Mathematics, 2016, том 22, выпуск 2, страницы 240–261
(Mi adm586)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
RESEARCH ARTICLE
A horizontal mesh algorithm for posets with positive Tits form
Mariusz Kaniecki, Justyna Kosakowska, Piotr Malicki, Grzegorz Marczak Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Аннотация:
Following our paper [Fund. Inform. 136 (2015), 345–379], we define a horizontal mesh algorithm that constructs a $\widehat{\Phi}_I$-mesh translation quiver $\Gamma(\widehat{\mathcal{R}}_I,\widehat{\Phi}_I)$ consisting of $\widehat{\Phi}_I$-orbits of the finite set $\widehat{\mathcal{R}}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of a poset $I$ with positive definite Tits quadratic form $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite, the algorithm constructs $\Gamma(\widehat{\mathcal{R}}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver $\Gamma({\mathcal{R}}_D,{\Phi}_D)$ of $\widehat{\Phi}_D$-orbits of the finite set ${\mathcal{R}}_D$ of roots of a simply laced Dynkin quiver $D$ associated with $I$.
Ключевые слова:
poset, combinatorial algorithm, Dynkin diagram, mesh geometry of roots, quadratic form.
Поступила в редакцию: 22.12.2015 Исправленный вариант: 05.01.2016
Образец цитирования:
Mariusz Kaniecki, Justyna Kosakowska, Piotr Malicki, Grzegorz Marczak, “A horizontal mesh algorithm for posets with positive Tits form”, Algebra Discrete Math., 22:2 (2016), 240–261
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm586 https://www.mathnet.ru/rus/adm/v22/i2/p240
|
Статистика просмотров: |
Страница аннотации: | 477 | PDF полного текста: | 99 | Список литературы: | 65 |
|