Аннотация:
Several problems are discussed concerning steady-state distribution of heat in domains in R3 that are complementary to a finite number of balls. The study of these problems was initiated by M. L. Glasser in 1977. Then, in 1978, M. L. Glasser and S. G. Davison presented numerical evidence that the heat flux from two equal balls in R3 decreases when the balls move closer to each other. These authors interpreted this result in terms of the behaviorial habits of sleeping armadillos, the closer animals to each other, the less heat they lose. Much later, in 2003, A. Eremenko proved this monotonicity property rigorously and suggested new questions on the heat fluxes.
The goal of this paper is to survey recent developments in this area, provide answers to some open questions, and draw attention to several challenging open problems concerning heat fluxes from configurations consisting of n⩾2 balls in R3.
Образец цитирования:
A. Yu. Solynin, “Problems on the loss of heat: herd instinct versus individual feelings”, Алгебра и анализ, 33:5 (2021), 1–50; St. Petersburg Math. J., 33:5 (2022), 739–775
\RBibitem{Sol21}
\by A.~Yu.~Solynin
\paper Problems on the loss of heat: herd instinct versus individual feelings
\jour Алгебра и анализ
\yr 2021
\vol 33
\issue 5
\pages 1--50
\mathnet{http://mi.mathnet.ru/aa1776}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 5
\pages 739--775
\crossref{https://doi.org/10.1090/spmj/1725}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1776
https://www.mathnet.ru/rus/aa/v33/i5/p1
Эта публикация цитируется в следующих 1 статьяx:
Dimitrios Betsakos, Alexander Solynin, Matti Vuorinen, “Conformal capacity of hedgehogs”, Conform. Geom. Dyn., 27:2 (2023), 55