|
Статьи
Numerically detectable hidden spectrum of certain integration operators
N. Nikolskiab a St. Petersburg State University, Chebyshev Laboratory, 199178, St. Petersburg, Russia
b University of Bordeaux, France
Аннотация:
It is shown that the critical constant for effective inversions in operator algebras alg(V) generated by the Volterra integration Jf=∫x0fdt in the spaces L1(0,1) and L2(0,1) are different: respectively, δ1=1/2 (i.e., the effective inversion is possible only for polynomials T=p(J) with a small condition number r(T−1)‖T‖<2, r(⋅) being the spectral radius), and δ1=1 (no norm control of inverses). For more general integration operator Jμf=∫[0,x>fdμ on the space L2([0,1],μ) with respect to an arbitrary finite measure μ, the following 0−1 law holds: either δ1=0 (and this happens if and only if μ is a purely discrete measure whose set of point masses μ({x}) is a finite union of geometrically decreasing sequences), or δ1=1.
Ключевые слова:
effective inversion, visible spectrum, integration operator.
Поступила в редакцию: 25.06.2016
Образец цитирования:
N. Nikolski, “Numerically detectable hidden spectrum of certain integration operators”, Алгебра и анализ, 28:6 (2016), 70–83; St. Petersburg Math. J., 28:6 (2017), 773–782
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1514 https://www.mathnet.ru/rus/aa/v28/i6/p70
|
Статистика просмотров: |
Страница аннотации: | 294 | PDF полного текста: | 60 | Список литературы: | 61 | Первая страница: | 14 |
|