Аннотация:
A proof of the optimal regularity and free boundary regularity is announced and informally discussed for the Signorini problem for the Lamé system. The result, which is the first of its kind for a system of equations, states that if u=(u1,u2,u3)∈W1,2(B+1:R3) minimizes
J(u)=∫B+1|∇u+∇⊥u|2+λ(div(u))2
in the convex set
K={u=(u1,u2,u3)∈W1,2(B+1:R3);u3⩾0 on Π,u=f∈C∞(∂B1) on (∂B1)+},
where, say, λ⩾0, then u∈C1,1/2(B+1/2). Moreover, the free boundary, given by Γu=∂{x;u3(x)=0,x3=0}∩B1, will be a C1,α-graph close to points where u is nondegenerate. Historically, the problem is of some interest in that it is the first formulation of a variational inequality. A detailed version of this paper will appear in the near future.
Ключевые слова:
free boundary regularity, Signorini problem, optimal regularity, system of equations.
Образец цитирования:
John Andersson, “Optimal regularity and free boundary regularity for the Signorini problem”, Алгебра и анализ, 24:3 (2012), 1–21; St. Petersburg Math. J., 24:3 (2013), 371–386
\RBibitem{And12}
\by John~Andersson
\paper Optimal regularity and free boundary regularity for the Signorini problem
\jour Алгебра и анализ
\yr 2012
\vol 24
\issue 3
\pages 1--21
\mathnet{http://mi.mathnet.ru/aa1282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3014126}
\zmath{https://zbmath.org/?q=an:1272.49079}
\elib{https://elibrary.ru/item.asp?id=20730156}
\transl
\jour St. Petersburg Math. J.
\yr 2013
\vol 24
\issue 3
\pages 371--386
\crossref{https://doi.org/10.1090/S1061-0022-2013-01244-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331548200001}
\elib{https://elibrary.ru/item.asp?id=20838300}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877638761}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1282
https://www.mathnet.ru/rus/aa/v24/i3/p1
Эта публикация цитируется в следующих 4 статьяx:
A. Ruland, W. Shi, “Optimal regularity for the thin obstacle problem with C0,α coefficients”, Calc. Var. Partial Differ. Equ., 56:5 (2017), 129
D. Danielli, N. Garofalo, A. Petrosyan, T. To, “Optimal regularity and the free boundary in the parabolic Signorini problem”, Mem. Am. Math. Soc., 249:1181 (2017), 1+
G. Drouet, P. Hild, “An accurate local average contact method for nonmatching meshes”, Numer. Math., 136:2 (2017), 467–502
G. Drouet, P. Hild, “Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set”, SIAM J. Numer. Anal., 53:3 (2015), 1488–1507