Алгебра и анализ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2009, том 21, выпуск 5, страницы 155–195 (Mi aa1157)  

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

Статьи

Теорема Эшелби и задача об оптимальной заплате

С. А. Назаров

Институт проблем машиноведения РАН, г. Санкт-Петербург, Россия
Список литературы:
Аннотация: Проверено, что в случае эллипсоидального включения Ω0Ω0 в евклидовом пространстве Rn линейно растущее на бесконечности решение однородной задачи сопряжения для формально самосопряженной эллиптической системы дифференциальных уравнений второго порядка с кусочно-постоянными коэффициентами оказывается линейной вектор-функцией внутри Ω0. Этот факт, обобщающий классическую теорему Эшелби в теории упругости, позволяет указать простые явные формулы для матрицы поляризации включения в объемлющем пространстве и решить одну из задач об оптимальной кройке заплаты для эллиптической прорехи.
Ключевые слова: формально самосопряженная эллиптическая система, условия сопряжения, эллипсоидальное включение, теорема Эшелби, оптимизация включения.
Поступила в редакцию: 24.03.2009
Англоязычная версия:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 5, Pages 791–818
DOI: https://doi.org/10.1090/S1061-0022-2010-01118-X
Реферативные базы данных:
Тип публикации: Статья
MSC: 35J57, 74B05
Образец цитирования: С. А. Назаров, “Теорема Эшелби и задача об оптимальной заплате”, Алгебра и анализ, 21:5 (2009), 155–195; St. Petersburg Math. J., 21:5 (2010), 791–818
Цитирование в формате AMSBIB
\RBibitem{Naz09}
\by С.~А.~Назаров
\paper Теорема Эшелби и задача об оптимальной заплате
\jour Алгебра и анализ
\yr 2009
\vol 21
\issue 5
\pages 155--195
\mathnet{http://mi.mathnet.ru/aa1157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604567}
\zmath{https://zbmath.org/?q=an:1204.35085}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 5
\pages 791--818
\crossref{https://doi.org/10.1090/S1061-0022-2010-01118-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282186800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861627507}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/aa1157
  • https://www.mathnet.ru/rus/aa/v21/i5/p155
  • Эта публикация цитируется в следующих 7 статьяx:
    1. Novotny A.A., Sokolowski J., Zochowski A., “Topological Derivatives of Shape Functionals. Part i: Theory in Singularly Perturbed Geometrical Domains”, J. Optim. Theory Appl., 180:2 (2019), 341–373  crossref  mathscinet  zmath  isi  scopus
    2. Freidin A.B., Kucher V.A., “Solvability of the Equivalent Inclusion Problem For An Ellipsoidal Inhomogeneity”, Math. Mech. Solids, 21:2, SI (2016), 255–262  crossref  mathscinet  zmath  isi  elib  scopus
    3. Leugering G., Nazarov S.A., “The Eshelby Theorem and Its Variants For Piezoelectric Media”, Arch. Ration. Mech. Anal., 215:3 (2015), 707–739  crossref  mathscinet  zmath  isi  scopus
    4. Schury F., Greifenstein J., Leugering G., Stingl M., “on the Efficient Solution of a Patch Problem With Multiple Elliptic Inclusions”, Optim. Eng., 16:1 (2015), 225–246  crossref  mathscinet  zmath  isi  elib  scopus
    5. Schneider M., Andrae H., “The Topological Gradient in Anisotropic Elasticity With An Eye Towards Lightweight Design”, Math. Meth. Appl. Sci., 37:11 (2014), 1624–1641  crossref  mathscinet  zmath  isi  elib  scopus
    6. Gryshchuk S., de Cristoforis M.L., “Simple Eigenvalues For the Steklov Problem in a Domain With a Small Hole. a Functional Analytic Approach”, Math. Meth. Appl. Sci., 37:12 (2014), 1755–1771  crossref  mathscinet  zmath  isi  elib  scopus
    7. Leugering G. Nazarov S. Schury F. Stingl M., “The Eshelby theorem and application to the optimization of an elastic patch”, SIAM J. Appl. Math., 72:2 (2012), 512–534  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Статистика просмотров:
    Страница аннотации:937
    PDF полного текста:303
    Список литературы:93
    Первая страница:16
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025