Аннотация:
George Lorentz influenced the author's research on inequalities in approximation in many ways. This is the connecting thread of this survey paper. The themes of the survey are listed at the very beginning of the paper.
Образец цитирования:
T. Erdélyi, “George Lorentz and inequalities in approximation”, Алгебра и анализ, 21:3 (2009), 1–57; St. Petersburg Math. J., 21:3 (2010), 365–405
\RBibitem{Erd09}
\by T.~Erd{\'e}lyi
\paper George Lorentz and inequalities in approximation
\jour Алгебра и анализ
\yr 2009
\vol 21
\issue 3
\pages 1--57
\mathnet{http://mi.mathnet.ru/aa1138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2588761}
\zmath{https://zbmath.org/?q=an:1203.41001}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 3
\pages 365--405
\crossref{https://doi.org/10.1090/S1061-0022-10-01099-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277451000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871269715}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1138
https://www.mathnet.ru/rus/aa/v21/i3/p1
Эта публикация цитируется в следующих 9 статьяx:
А. И. Парфёнов, “Критерий соболевской корректности задачи Дирихле для уравнения Пуассона в липшицевых областях. II”, Сиб. электрон. матем. изв., 20:1 (2023), 211–244
Ait-Haddou R., Goldman R., Mazure M.-L., “Quantum Lorentz Degrees of Polynomials and a Polya Theorem For Polynomials Positive on Q-Lattices”, Appl. Numer. Math., 165 (2021), 553–577
Chunaev P., Danchenko V., “Quadrature Formulas With Variable Nodes and Jackson-Nikolskii Inequalities For Rational Functions”, J. Approx. Theory, 228 (2018), 1–20
Ait-Haddou R., “On the Lorentz Degree of a Product of Polynomials”, J. Approx. Theory, 189 (2015), 81–87
Nursultanov E., Tikhonov S., “A Sharp Remez Inequality for Trigonometric Polynomials”, Constr. Approx., 38:1 (2013), 101–132
Baranov A., Zarouf R., “A Bernstein-Type Inequality for Rational Functions in Weighted Bergman Spaces”, Bull. Sci. Math., 137:4 (2013), 541–556
Ganzburg M.I., “On a Remez-type inequality for trigonometric polynomials”, J. Approx. Theory, 164:9 (2012), 1233–1237
Lukashov A., Akturk M.A., “Remez type inequality for trigonometric polynomials on an interval”, First International Conference on Analysis and Applied Mathematics (ICAAM 2012), AIP Conference Proceedings, 1470, eds. Ashyralyev A., Lukashov A., Amer. Inst. Physics, 2012, 42–44