Образец цитирования:
Б. Л. Фейгин, Э. В. Френкель, “Семейство представлений аффинных алгебр Ли”, УМН, 43:5(263) (1988), 227–228; Russian Math. Surveys, 43:5 (1988), 221–222
Thomas Creutzig, Naoki Genra, Andrew Linshaw, “Ordinary modules for vertex algebras of 𝔬𝔰𝔭1|2𝑛”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2024
Katrina Barron, Karina Batistelli, Florencia Orosz Hunziker, Veronika Pedić Tomić, Gaywalee Yamskulna, “On rationality of C-graded vertex algebras and applications to Weyl vertex algebras under conformal flow”, Journal of Mathematical Physics, 63:9 (2022)
Lentner S.D., “Quantum Groups and Nichols Algebras Acting on Conformal Field Theories”, Adv. Math., 378 (2021), 107517
Gwilliam O., Williams B.R., “Higher Kac-Moody Algebras and Symmetries of Holomorphic Field Theories”, Adv. Theor. Math. Phys., 25:1 (2021), 129–239
Naoki Genra, “Screening operators and parabolic inductions for affine W-algebras”, Advances in Mathematics, 369 (2020), 107179
Alexey Litvinov, Lev Spodyneiko, “On W algebras commuting with a set of screenings”, J. High Energ. Phys., 2016:11 (2016)
David Ridout, Simon Wood, “Relaxed singular vectors, Jack symmetric functions and fractional level <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="fraktur">sl</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover><mml:mrow><mml:mo st”, Nuclear Physics B, 894 (2015), 621
Cuipo Jiang, Song Wang, “Extension of Vertex Operator Algebra”, Algebra Colloq, 21:03 (2014), 361
Shogo Aoyama, Katsuyuki Ishii, “Consistently constrained SL(N) WZWN models and classical exchange algebra”, J. High Energ. Phys, 2013:3 (2013)
H Afshar, M Gary, D Grumiller, R Rashkov, M Riegler, “Semi-classical unitarity in three-dimensional higher spin gravity for non-principal embeddings”, Class. Quantum Grav, 30:10 (2013), 104004
JONATHAN DUNBAR, NAIHUAN JING, K.C.. MISRA, “REALIZATION OF $\hat{\mathfrak{sl}}_2(\mathbb{C}) AT THE CRITICAL LEVEL”, Commun. Contemp. Math, 2013, 1311200119
Yixin Bao, Cuipo Jiang, Yufeng Pei, “Representations of affine Nappi–Witten algebras”, Journal of Algebra, 2011
Feigin, B, “Gaudin models with irregular singularities”, Advances in Mathematics, 223:3 (2010), 873
JØRGEN RASMUSSEN, “A NOTE ON KERR/CFT AND FREE FIELDS”, Int. J. Mod. Phys. A, 25:20 (2010), 3965
С. Е. Клевцов, “К вертекс-операторной конструкции квантовых аффинных алгебр”, ТМФ, 154:2 (2008), 240–248; S. E. Klevtsov, “Toward a vertex operator construction of quantum affine algebras”, Theoret. and Math. Phys., 154:2 (2008), 201–208
M. Gorelik, V. V. Serganova, “On representations of the affine superalgebra q(n)(2)”, Mosc. Math. J., 8:1 (2008), 91–109
Frenkel E., Gaitsgory D., “Geometric realizations of Wakimoto modules at the critical level”, Duke Math J, 143:1 (2008), 117–203
Frenkel E., “Ramifications of the geometric Langlands Program”, Representation Theory and Complex Analysis, Lecture Notes in Mathematics, 1931, 2008, 51–135
Edward Frenkel, Lecture Notes in Mathematics, 1931, Representation Theory and Complex Analysis, 2008, 51