Аннотация:
Numerical integration of ODEs by standard numerical methods reduces continuous time problems to discrete time problems. Discrete time problems have intrinsic properties that are absent in continuous time problems. As a result, numerical solution of an ODE may demonstrate dynamical phenomena that are absent in the original ODE. We show that numerical integration of systems with one fast rotating phase leads to a situation of such kind: numerical solution demonstrates phenomenon of scattering on resonances that is absent in the original system.
Ключевые слова:
systems with rotating phases, passage through a resonance, numerical integration, discretisation.
Поступила в редакцию: 16.03.2012 Принята в печать: 04.04.2012
Образец цитирования:
Anatoly Neishtadt, Tan Su, “On Phenomenon of Scattering on Resonances Associated with Discretisation of Systems with Fast Rotating Phase”, Regul. Chaotic Dyn., 17:3-4 (2012), 359–366
\RBibitem{NeiSu12}
\by Anatoly Neishtadt, Tan Su
\paper On Phenomenon of Scattering on Resonances Associated with Discretisation of Systems with Fast Rotating Phase
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 3-4
\pages 359--366
\mathnet{http://mi.mathnet.ru/rcd407}
\crossref{https://doi.org/10.1134/S1560354712030100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2956228}
\zmath{https://zbmath.org/?q=an:1256.65072}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..359N}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865564828}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd407
https://www.mathnet.ru/rus/rcd/v17/i3/p359
Эта публикация цитируется в следующих 1 статьяx:
Christian Kuehn, Applied Mathematical Sciences, 191, Multiple Time Scale Dynamics, 2015, 619